

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

December 2023

Copyright [2023]
The Export – Import Bank of Korea / EDCF (Economic Development Cooperation Fund)
38 Eunhaeng-ro, Yeongdeungpo-gu

Seoul, 07242, Republic of Korea Telephone: +82-2-3779-6114

Website: www.koreaexim.go.kr / www.edcfkorea.go.kr

This report was prepared for the Government of Bangladesh by the Export – Import Bank of Korea / EDCF. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of the Bank / EDCF and the Bank / EDCF does not guarantee the accuracy of the data included in this commissioned work.

Contents

Chapter	Title	Page
Contents		i
Abbreviatio	n	vii
1	Introduction	1-1
1.1	Introduction	1-1
1.1.1	Introduction	1-1
1.1.2	Project Background	1-1
1.1.3	Purpose of the Project	1-2
1.2	Project Scope	1-3
1.2.1	Specific Request from PEA	1-3
1.3	Planning Framework	1-5
1.4	Technical Feasibility Analysis	1-6
1.4.1	Sewage Treatment Plant	1-6
1.4.2	Sanitary Sewer & Pumping Station	1-25
1.5	Project Executing Agency	1-30
1.5.1	Project Implementation Organization	1-30
1.5.2	Project Management Unit	1-31
1.6	Project Cost Estimate	1-32
1.6.1	Introduction	1-32
1.6.2	Project Cost Components by Currency	1-34
1.6.3	Total Project Cost	1-35
1.7	Economic & Financial Feasibility Analysis	1-37
1.7.1	Economic Feasibility Analysis	1-37
1.7.2	Financial Feasibility Analysis	1-39
1.8	Environmental & Social Impact Assessment	1-41
1.8.1	Categorization	1-41
1.8.2	Environmental Impact Assessment	1-41
1.8.3	Social Impact Assessment	1-41
1.9	Project Monitoring Framework	1-43
1.10	Project Implementation Period	1-45
2	General Information	2-1
2.1	Natural Condition	2-1
2.1.1	Introduction	2-1
2.1.2	Topography & Geography	2-3
2.1.3	Climate	2-7
2.1.4	River System	2-8

i

2.1.5	Water Resource & Land Use	2-10
2.2	Socio-Economic Conditions	2-15
2.2.1	Administrative District & Population	2-15
2.2.2	Economic Condition	2-21
2.2.3	Industry Condition	2-23
2.3	Relevant Plan	2-25
2.3.1	Long-Term Plan	2-25
2.3.2	Sewerage System Master Plan	2-27
2.4	Existing Water Supply & Sewerage System	2-32
2.4.1	Statistics of Water Supply & Sewerage System	2-32
2.4.2	Existing Water Supply System	2-37
2.4.3	Existing Sewerage System	2-48
2.4.4	Project Executing Agency	2-49
2.4.5	Policy, Legislative and Administrative Framework	2-52
2.4.6	Water Supply and Sewage Tariff	2-58
2.5	Site Survey	2-60
2.5.1	Site Survey	2-60
2.5.2	Topographical Survey	2-66
2.5.3	Geotechnical Investigation	2-69
2.5.4	Water Quality Survey	2-77
2.5.5	Household Connection Survey	2-88
2.6	Review of Similar Project	2-96
2.6.1	Sewerage Projects of Project Area	2-96
2.6.2	EDCF Projects	2-101
3	Planning Framework	3-1
3.1	Target Year	3-1
3.2	Population Projection	3-2
3.2.1	Current Population	3-2
3.2.2	Population Projection	3-4
3.3	Sewage Service Coverage	3-7
3.3.1	Introduction	3-7
3.3.2	Current Sewage Service Coverage	3-8
3.3.3	Sewage Service Area	3-10
3.3.4	Sewage Serving Option	3-13
3.3.5	Sewage Service Coverage Projection	3-15
3.3.6	Sewage Service Population	3-15
3.4	Wastewater Generation Projection	3-16
3.4.1	Introduction	3-16
3.4.2	Domestic Wastewater Generation	3-17
3.4.3	Non-Domestic Wastewater Generation	3-20
3.4.4	Infiltration	3-20
3 1 5	Overall Wastewater Ceneration	3_21

3.4.6	Faecal Sludge Production	3-22
3.5	Wastewater Characteristic	3-24
3.5.1	Specific Loads	3-24
3.5.2	Population Equivalent	3-25
3.5.3	Influent Quality	3-25
4	Technical Feasibility Analysis	4-1
4.1	Introduction	4-1
4.1.1	Introduction	4-1
4.1.2	Project Scope	4-1
4.1.3	Specific Request from PEA	4-2
4.2	Sewage Treatment Plant	4-3
4.2.1	Introduction	4-3
4.2.2	Phase Plan of Sewage Treatment Plant	4-3
4.2.3	Treatment Process of Sewage Treatment Plant	4-4
4.3	Sanitary Sewer & Pumping Station	4-56
4.3.1	Introduction	4-56
4.3.2	Current Status and Problems	4-56
4.3.3	Sewerage Collection System	4-57
4.3.4	Sanitary Sewer	4-60
4.3.5	Pumping Station (Phase 2)	4-83
4.3.6	Household Connection	4-85
4.4	Architectural, Mechanical, Electrical & Instrumentation Works	4-88
4.4.1	Architectural Works	4-88
4.4.2	Mechanical Works	4-92
4.4.3	Electrical Works	4-117
4.4.4	Instrumentation Works	4-128
4.5	Capacity Building	4-134
4.5.1	Commissioning & Training	4-134
4.5.2	O&M Support after Construction Completion	4-137
4.6	Consulting Service	4-139
4.6.1	Necessity of the Consultant	4-139
4.6.2	Scope of Works of the Consultant	4-139
4.6.3	Procedures for Selection of Consultants	4-140
4.6.4	Required Mobilization Plan	4-141
4.7	Contractor Selection	4-145
4.7.1	Selection Method	4-145
4.7.2	Contractor Selection Process	4-147
4.7.3	Contractor Work Scope	4-147
4.8	Operation and Maintenance	4-148
4.8.1	General	4-148
4.8.2	O&M Cost Estimate	4-149
4.8.3	Measures When a problem occurs	4-151

iii

4.9	Project Implementation Period	4-152
5	Project Executing Agency	5-1
5.1	Project Executing Agency	5-1
5.1.1	General	5-1
5.1.2	Organization	5-1
5.1.3	Similar Project Experiences	5-3
5.2	Project Organization Structure	5-6
5.2.1	Project Implementation Organization	5-6
5.2.2	Project Management Unit	5-7
5.2.3	Case Study of PMU in similar project	5-8
5.3	Project Readiness	5-11
5.3.1	Readiness of PEA	5-11
5.3.2	Land Acquisition & Resettlement	5-11
6	Project Cost Estimate	6-1
6.1	Introduction	6-1
6.1.1	General	6-1
6.1.2	Exchange Rate	6-3
6.1.3	Project Cost Components by Currency	6-4
6.2	Direct Project Cost	6-5
6.2.1	Construction Cost	6-5
6.2.2	Commissioning & Training Cost	6-7
6.2.3	O&M Support Cost after Construction Completion	6-7
6.2.4	Consulting Service Cost	6-8
6.2.5	Direct Project Cost	6-9
6.3	Indirect Project Cost	6-9
6.3.1	Contingencies	6-9
6.3.2	Taxes & Duties	6-12
6.3.3	Land Acquisition & Resettlement Cost	6-12
6.3.4	Project Management Cost	6-13
6.3.5	EDCF Service Charge	6-13
6.4	Total Project Cost	6-14
6.4.1	Total Project Cost	6-14
6.4.2	Financing Plan	6-15
6.4.3	Annual Disbursement Plan	6-15
7	Economic & Financial Feasibility Analysis	7-1
7.1	Economic Feasibility Analysis	7-1
7.1.1	General	7-1
7.1.2	Analysis Condition	7-1
7.1.3	Analysis Method	7-2
7.1.4	Cost Estimate	7-4
7.1.5	Benefit Analysis	7-6

İ۷

7.1.6	Economic Feasibility Analysis	7-11
7.2	Financial Feasibility Analysis	7-13
7.2.1	General	7-13
7.2.2	Analysis Method	7-13
7.2.3	Financial Feasibility Analysis	7-16
8	Environmental & Social Impact Assessment	8-1
8.1	General	8-1
8.2	Related Laws and Policies	8-1
8.3	Environmental & Social Impact Procedure	8-3
8.3.1	Environmental Impact Assessment Procedure	8-3
8.3.2	Social Impact Assessment Process	8-5
8.4	Classification of Environmental and Social Impacts	8-10
8.4.1	Bangladesh Categorization	8-10
8.4.2	EDCF Categorization	8-11
8.5	Stakeholder Consultations	8-12
8.6	Environmental & Social Impact Assessment	8-13
8.6.1	Environmental Impact Assessment	8-13
8.6.2	Social Impact Assessment	8-13
9	Project Feasibility Analysis	9-1
9.1	Policy & Strategic Aspects	9-1
9.2	Legal Aspect	9-3
9.2.1	Laws & Policies	9-3
9.2.2	Legal Feasibility	9-9
9.3	Technical Aspects	9-10
9.3.1	Feasibility of Project Area	9-10
9.3.2	Feasibility of Sewerage System	9-12
9.3.3	Appropriateness of Project Implementation Period	9-15
9.4	Project Monitoring Framework (PMF)	9-16

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

Appendix

- 1. Inception Report
- 2. Presentation
 - Presentation
 - Minutes of Meeting
- 3. Site Survey
 - Topographic Survey
 - Geotechnical Investigation Report
 - Water Quality Survey Report
 - Household Connection Survey Report
- 4. Planning Framework
- 5. Process Calculation
 - Sewage Treatment Plant
 - Sanitary Sewer
- 6. Economic & Financial Feasibility Analysis
 - Economic Feasibility Analysis
 - Financial Feasibility Analysis
- 7. Project Cost Estimate
- 8. Preliminary Design Drawings
- 9. Initial Environmental & Social Impact Assessment
 - Initial Social Impact Assessment
 - Initial Environmental Examination
- 10. Faecal Sludge Management

νi

Abbreviation

A2O Anaerobic-Anoxic-Aerobic Process

ACI American Concrete Institute

ADB Asia Development Bank

AFD Agence Francaise de Developpement

AIT Advanced Income Tax

ANSI American National Standards Institute
ASTM American Society of Testing Materials

ATP Affordability to Pay

AWWA American Water Works Association

B/C Benefit/Cost

BBS Bangladesh Bureau of Statistics

BDT Bangladeshi Taka

BOD Biological Oxygen Demand

BOQ Bills of Quantities

BPDB Bangladesh Power Development Board

BS British Standards

BWDB Bangladesh Water Development Board

CAPEX Capital Expenditure

CAS Conventional Activated Sludge Process

CBD Central Business District
CCC Chattogram City Corporation
CCTV Closed Circuit Television

CDA Chattogram Development Authority

CDP City Development Plan

CIF Cost, Insurance and Freight

CMMP Chittagong Metropolitan Master Plan (2008)

COD Chemical Oxygen Demand
CPA Chattogram Port Authority

CWASA Chattogram Water Supply and Sewerage Authority

CWSISP Chattogram Water Supply Improvement & Sanitation Project

DAC Development Assistance Committee

DAP Detailed Area Plan

DDC Development Design Consultants limited

DOE Department of Environment

DPHE Department of Public Health Engineering

DPP Development Project Proposal

DPZ Detailed Planning Zone

νii

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

DTW Deep Tube Well

DWASA Dhaka Water Supply and Sewerage Authority

DWFI Dry Weather Flow Interceptor

ECC Environmental Compliance Certificate

ECR Effluent Conservation Rules

EDCF Economic Development Cooperation Fund

EHS Environment, Health and Safety
EIA Environmental Impact Assessment
EIRR Economic Internal Rate of Return
EMA Environmental Management Act

EN European code

ESF Environmental and Social Framework

ESIA Environmental and Social Impact Assessment
ESMP Environment and Social Management Plan

F/M Food to Microorganism

F/S Feasibility Study

FGD Focus Group Discussions

FIRR Financial Internal Rate of Return

FOB Free on Board

FSM Faecal Sludge Management GDP Gross Domestic Product

GIS Geographic Information System
GOB Government of Bangladesh
Gpcd Gram per Capita per Day
GRP Glass-Fiber Reinforced Plastic

GWI Groundwater Infiltration
H/C Household Connection
HDPE High Density Polyethylene
HRT Hydraulic Retention Time

IEC International Electrotechnical Commission
IEEE Institute of Electrical & Electronics Engineers
IEIA Initial Environmental Impact Assessment

IESIA Initial Environmental & Social Impact Assessment

IMF International Monetary Fund

IRP Iron Removal Plant
IRR Internal Rate of Return

ISA Instrument Society of America

ISO International Organization for Standardization

IWA International Water Association

JICA Japan International Cooperation Agency

KDI Korea Development Institute

KEPZ Karnaphuli Export Processing Zone
KEXIM The Export-Import Bank of Korea

viii

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

KRW Korean Won
L/A Loan Agreement

LGD Local Government Division

LGED Local Government Engineering Department

Lpcd Liter per Capita per Day

M/D Man-Dates M/M Man-Months

MDB Multilateral Development Bank

MLD Million Litres per Day

MLE Modified Ludzack-Ettinger Process
MLSS Mixed Liquor Suspended Solids

MP Master Plan

NEC National Electrical Code

NEMA National Electrical Manufactures Association

NFPA National Fire Protection Association NGO Non-Governmental Organization

NHA National Housing Authority NOC No Objection Certificate

NPV Net Present Value

O&M Operation & Maintenance

OD Oxidation Ditch

ODA Official Development Assistance

OECD Organisation for Economic Co-operation and Development

OPEX Operating Expenditure
PCR Project Completion Report
PE Population Equivalent
PEA Project Executing Agency

PESSCM-1 Project for Establishment of Sewerage System in Chattogram Metropolitan (Phase-1)

PI Profitability Index

PIU Project Implementation Unit
PMU Project Management Unit

PPA Project Preparation Assistance

PPP Public Private Partnership

PS Pumping Station
PV Present Value

PWD Public Works Department

R/C Revenue/Cost Ratio

RAP Resettlement Action Plan
RAS Return Activated Sludge
R&R Roles & Responsibilities
RTK Real Time Kinematic
SAS Surplus Activated Sludge
SBR Sequencing Batch Reactor

İΧ

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

SCADA Supervisory Control and Data Acquisition

SDG Sustainable Development Goal

SE Superintending Engineer
SPT Standard Penetration Test
SRT Sludge Retention Time

SS Suspended Solid

STP Sewage Treatment Plant TKN Total Kjeldahl Nitrogen

T-N Total Nitrogen

TOR Terms of Reference
T-P Total Phosphorus

TSS Total Suspended Solids

UNDP United Nations Development Programme

UNFCCC United Nations Framework Convention on Climate Change

USD United States Dollar
VAT Value Added Tax
WB World Bank

WSSP Water Supply and Sanitation Programme

WTP Water Treatment Plant

Χ

1 Introduction

1.1 Introduction

1.1.1 Introduction

The Consultant Dongsung Engineering, in association with Kunhwa Engineering & Consulting, has signed the contract on 1st September 2022 with the KEXIM on the consultancy assignment tilted "Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component" hereafter referred to as "the Project", which is one of the sub-projects under the "Sanitation & Drainage Improvement Strategy and Master Plan for the City of Chattogram". The execution agency the project is the Chattogram Water Supply and Sewerage Authority (CWASA).

The objective of the Final Report is to present the conclusion of the feasibility study, including the planning framework, technical feasibility and preliminary design, project cost estimate, economic & financial feasibility analysis, initial environmental & social impact assessment based on the options have been agreed during the feasibility study.

1.1.2 Project Background

Chattogram is the second largest city in Bangladesh and its premier sea port and industrialized city and one of the fastest growing cities in Bangladesh. Almost all of Bangladesh's industrial exports originate in Chattogram and majority percent of Bangladesh's exports and imports are routed through the port of Chattogram. Chattogram's population has been increasing continuously and at a very high rate since Bangladesh's independence. The rapid and haphazard urbanization is exerting immense pressure on Chattogram's urban environment, and city authorities are struggling to deal with pressing environment issues such as wastewater management.

Chattogram though shortly will have satisfactory water supply situation, there is a lack of sanitation infrastructures within Chattogram, and no part of the city is actually connected to any form of sewerage system, hence the majority of the population typically utilizes septic tanks and pour-flush sanitation systems. Septic tank effluent disposal has generally been very sporadic and septic sludge has not been collected on a regular basis. Currently there are no sludge treatment facilities as well. As Chattogram is surrounded by rivers, karnaphuli & Halda and inter-connected with canals/khals, the vast majority part of domestic and industrial wastewater enters Chattogram's surface waters becoming partly cause of pollution. Besides, the City's sanitation infrastructure needs to be established rapidly to cope with the rapidly swelling population – currently estimated at 2.9 million and expected to reach 3.7 million by 2030.

The Government of Bangladesh prepared a policy framework to provide 100% sanitation facilities to its citizen by 2015. Mandate of CWASA, second biggest wings of the government in the water sector is to provide necessary services for residents of the Chattogram to collect, treat and dispose safely the sewage generating or to be generated within its service area. The Government of Bangladesh requested EDCF Loan for the project to improve public health and sanitation through the establishment of sewage treatment infrastructure in Fatehabad. During the Korea-Bangladesh EDCF policy consultation ('21.04), this project was listed as a '21-'25 mid-term candidate project. Korean government's EDCF (Economic Development Cooperation Fund) loan will be used to expand the sewerage system in Chattogram City for development and improvement of environmental infrastructures.

1.1.3 Purpose of the Project

The purpose of the project is as following;

- Construction of sewage infrastructure to achieve Bangladesh national vision
 - Improvement of Sewage Service coverage in accordance with the Perspective Plan of Bangladesh (2021 ~2041)
- To improve living standard and sanitation of inhabitants in the project area
 - Improvement of hygiene and sanitary condition of the Chattogram City, Hathajari Upazila and Raozan Upazila
 - Improvement of river water quality and restoration of the ecosystem
- To promote cooperation and establishment of human network between Korea and Bangladesh
 - Increasing economic cooperation between the two countries
 - Training and O&M support for the technology transfer
- To promote the sustainable economic development of the Bangladesh
- Korea, as one of OECD countries, contributes to infrastructure development and welfare improvement of Bangladesh

1.2 Project Scope

The following conditions are considered preferentially to maximize the effects of the project.

- To place on the priority to improve the current sanitation situation of Chattogram City, Hathajari Upazila and Raozan Upazila.
- To set up the foundation of sewerage system of the project areas considering the future expansion.

Table 1-1 Project Scope

Category	Scope
Project Area	7 wards in Catchment-3 of Chattogram City Corporation Hathazari Upazila & Raozan Upazila
Sewerage System	 Sewage Treatment Plant, Q=60,000m³/d (Daily Average) Faecal Sludge Treatment Plant, Q=100m³/d Sanitary Sewer, D200~1,600mm, L=58.3km Household Connection, 10,000nos. Operation & Maintenance Vehicles (Faecal sludge collection vehicles and O&M Vehicles, etc.)
Capacity Building	Commissioning & Training O&M Support after Construction Completion (2 years)
Consulting Service	Detailed Design & Bidding Support Construction Supervision

Note) The project scope is subject to change in according to the consultation between KEXIM and the project executing agency (CWASA).

1.2.1 Specific Request from PEA

There is specific request from PEA regarding household connection financing support, reserve facilities for sludge treatment, reduction of O&M cost. The Consultant have discussed with KEXIM and PEA during feasibility study, it is summarized as below.

Table 1-2 Specific Request from PEA

Category	Request from PEA	Review
Household Connection Financing	Insufficient financial resources of GOB for household connection construction, financing support from EDCF loan is requested.	Household connection is planned as GOB portion in FS, the procurement method will be decided to select the contractor during the detailed design stage.
Reserve Facilities for Sludge Treatment	 Reserve facilities for sludge treatment such as sludge drying bed, faecal sludge treatment plant, sludge cake storage facility can be an option to reduce the O&M cost of STP in dry season. 	Reserve facilities for sludge treatment are not included in the project scope because the construction cost is about 12 US\$ million, so the initial investment cost is excessive.
Reduction of O&M cost	O&M cost is a burden to PEA after project completion.	 Energy efficient equipments & power control system are considered Biogas power generation (Phase 2) & Solar power generation (Phase 1) is planned as a renewable energy source for energy self-sufficient plant.

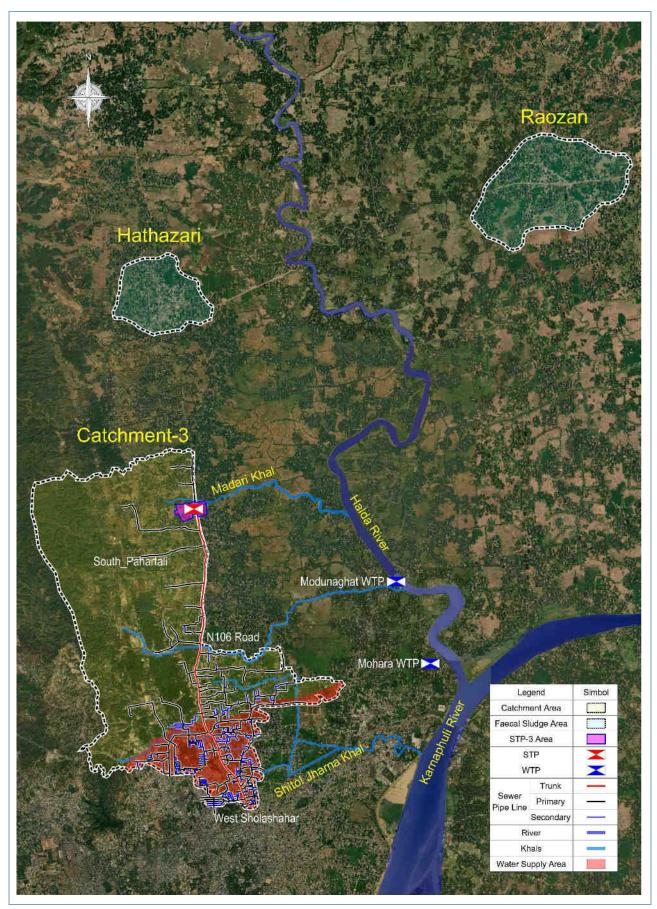


Figure 1-1 Layout of the Project

1.3 Planning Framework

Planning framework is a very important step in establishing a plan for the expansion of sewerage system by carefully estimating the future population, Sewage Service areas, and wastewater generation. Furthermore, appropriate facilities should be determined to avoid over-investment or insufficient facilities due to overplanning or under-planning.

Table 1-3 Planning Framework

	Category		Unit	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)
	Projected Population		pers	388,585	473,904	598,614	810,008	1,048,808
Population	Sewage Ser	vice Coverage	%	-	60.0	65.0	72.5	80.0
	Sewage Ser	vice Population	pers	-	284,342	389,099	587,254	839,046
		omestic onsumption	Lpcd	120	120	120	120	120
		Seneration Ratio	%	90.0	90.0	90.0	90.0	90.0
		Daily Avg.	-	1.00	1.00	1.00	1.00	1.00
	Peak Factor	Daily Max.	-	1.25	1.25	1.25	1.25	1.25
		Hourly Max.	-	1.875	1.875	1.875	1.875	1.875
Unit Load	Hait Daniertie	Daily Avg.	Lpcd	108	108	108	108	108
	Unit Domestic Wastewater Generation	Daily Max.	Lpcd	135	135	135	135	135
		Hourly Max.	Lpcd	162	162	162	162	162
	Non-Domestic Wastewater Generation Ratio		%	15	15	15	15	15
	Infiltration Ratio		%	15	15	15	15	15
	Domestic Wastewater	Daily Avg.	m³/d	-	30,709	42,023	63,423	90,617
		Daily Max.	m³/d	-	38,386	52,528	79,279	113,271
		Hourly Max.	m³/d	-	57,721	78,987	119,213	170,326
	Non	Daily Avg.	m³/d	-	4,606	6,303	9,513	135,925
	Non- Domestic	Daily Max.	m³/d	-	5,758	7,879	10,940	15,632
Wastewater	Wastewater	Hourly Max.	m³/d	-	8,658	11,848	17,882	25,549
Generation		Daily Avg.	m³/d	-	5,297	7,248	10,940	15,632
	Infiltration	Daily Max.	m³/d	-	5,297	7,248	10,940	15,632
		Hourly Max.	m³/d	-	5,297	7,248	10,940	15,632
		Daily Avg.	m³/d	-	40,612	55,574	83,876	119,842
	Total	Daily Max.	m³/d	-	49,441	67,655	102,111	145,894
		Hourly Max.	m³/d	-	71,676	98,083	148,035	211,507

1.4 Technical Feasibility Analysis

1.4.1 Sewage Treatment Plant

1.4.1.1 Phase Plan

This project plans to construct a sewage treatment facility with a capacity of 60,000m³/d to treat the wastewater generated in the project area for the Phase 1 in target year 2040. Phase plan of the second and third phase is also established to treat the wastewater for the final target year 2070.

- Phase 1: Construction of STP with a capacity of 60,000m³/d
- Phase 2: Expansion of STP with a capacity of 30,000m³/d
- Phase 3: Expansion of STP with a capacity of 30,000m³/d

Table 1-4 Phase Plan of Sewage Treatment Plant (m³/d)

Category		2030	2030 Phase 1 (2040)		Phase 3 (2070)
Wastewater Generation (Daily Average)		40,612	55,574	83,876	119,842
STP	Daily Avg.	60,000	60,000	90,000	120,000
Capacity	Daily Max.	75,000	75,000	115,000	150,000
Expansio	n Capacity	-	-	30,000	30,000
Bal	ance	19,388	4,426	6,124	158



Figure 1-2 Phase Plan of Sewage Treatment Plant

1.4.1.2 Influent & Effluent Quality

1.4.1.2.1 Influent Quality

The Influent Quality is a design factor that serves as a standard for sewage treatment facility planning, such as treatment method and efficiency, and is calculated by considering the unit load within the Sewage Service area. In this feasibility study, it is planned in consideration of on-going sewerage projects, related master plans and water quality survey.

Table 1-5 Influent Quality (mg/L)

Category	Catchment 1 (PESSCM 1)	Catchment 5	Catchment 2&4	Catchment 3 (This project)
BOD	340	302	310	322
COD	756	605	-	644
SS	454	363	370	386
T-N	72	30	31	76
T-P	14	4	5	15

1.4.1.2.2 Target Effluent Quality

The Bangladesh Department of Environment (DoE) established the standard Sewerage discharge in 1997 and revised the standard in March 2023. Bangladesh mainly have regulated the removal of SS and BOD, COD contained in the wastewater and the discharge standards have been strengthened recently to remove T-N and T-P to prevent eutrophication in the public water body.

In the Catchment-1 project, which is under construction, a target effluent water quality was set up as stronger than the effluent standard. In this feasibility study, target effluent quality is set up in consultation with PMU as follows.

Table 1-6 Target Effluent Quality

Category	Unit	Standard Sew	age Discharge	Target Effluent Quality		
Category		1997	2023	Catchment 1	Catchment 3	
Temperature	$^{\circ}$	30	30	24	24	
рН	-	-	6-9	6-9	6-9	
BOD	mg/L	40	30	20	20	
COD	mg/L	-	125	100	100	
SS	mg/L	100	100	30	30	
Oil and Grease	mg/L	-	10	-	-	
NO3-N	mg/L	250	50	40 as T-N	40 as T-N	
PO4-P	mg/L	35	15	10 as T-P	10 as T-P	
Coliform	CFU/100mL	1,000	1,000	1,000	1,000	

^{*}Source: Standard Sewerage discharge in the Environment Conservation Rules (1997&2023, DOE)

1.4.1.3 Sewage Treatment Process

1.4.1.3.1 Unit Process

Sewage treatment plant is a comprehensive facility combining unit processes, and consists of sewage treatment process and sludge treatment process. It is planned considering the function and purpose of each unit process.

- The target year for the inlet sewer to the STP is set up as 2070, so civil structure of pre-treatment & inlet pumping station is planned to cater the influent wastewater for the Phase 3 and mechanical, electrical/instrumentation facilities are planned for the Phase 1.
- A2O process is applied as advanced sewage treatment process to comply with the target effluent quality.
- Sludge stabilization process (anaerobic digestion) is planned to be introduced in Phase 2 in the consideration of the difficulty of O&M.
- Primary sedimentation tank is planned to be introduced in Phase 2 with the sludge stabilization process in the consideration of the high concentration of organics in the raw sludge
- Faecal sludge is planned to treat with sewage sludge after pre-treatment and thickening.
- Actual O&M status of Phase 1 should be analyzed when the expansion of Phase 2 & Phase 3 of sewage treatment plant is implemented.

Table 1-7 Unit Process of Sewage Treatment Plant

	Facility	Function	Unit Process	1	Phase 2	3
Sewage Treatment Process	Pre-Treatment & Inlet Pumping Station	Pre-treatment, equalization, securing hydraulic stability	Screen & grit removal Inlet pumping station, Equalization tank	0	0	0
	Primary Treatment	Reduce the load of the secondary treatment process	Primary sedimentation tank	-	0	0
	Secondary Treatment	Removal of organic and nutrients	Bioreactor, Secondary sedimentation tank	0	0	0
	Tertiary Treatment	Removal of pathogens	Disinfection facility	0	0	0
	Thickening	Reduction of the sludge volume	Thickening facility	0	0	0
Sludge Treatment Process	Stabilization	Reduction of the potential for odour generation and pathogens	Anaerobic digestion	-	0	0
	Dewatering	Reduction of the sludge volume	Dewatering facility	0	0	0
Faecal Sludge	Pre-Treatment	Pre-treatment, equalization	Screen & grit removal	0	0	0
Treatment Process	Thickening	Weight reduction for load reduction in subsequent processes	Thickening facility	0	0	0
Od	our control	Removal of odour from sewage & sludge treatment process	Odour control facility	0	0	0

1.4.1.3.2 Facility of Sewage Treatment Plant

This project plans to construct a sewage treatment facility with a capacity of 60,000m³/d to treat the wastewater generated in the project area for the Phase 1 (2040). Phase plan of the second and third phase is also established to treat the wastewater for the final target year (2070).

Table 1-8 Facility of Sewage Treatment Plant

	Facility		Item	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	
	Pre-Treatment		Туре	Coarse Scre	een + Vortex Grit Removal +	Fine Screen	
			Spec.	D4.1m x H3.3m x 2	D4.1m x H3.3m x 3	D4.1m x H3.3m x 4	
	Inlet F	Inlet Pumping Station		Submersible Mixed Flow Pump			
				31.3m³/min x 2(1) 15.6m³/min x 2	31.3m³/min x 4(2) 15.6m³/min x 2	31.3m³/min x 4(2) 15.6m³/min x 4	
	Primary Se	Primary Sedimentation		- Rectangular Tank		ular Tank	
		ank	Spec.	-	W7.0m x L35.0m x H3.5m x 3	W7.0m x L35.0 x H3.5m x 4	
		Anaerobic	Туре		Rectangular Tank		
Sewage Treatment		Reactor	Spec.	W14.4m x L18.0m x H5.0m x 4	W14.4m x L18.0m x H5.0m x 6	W14.4m x L18.0m x H5.0m x 8	
Process	Biological	Anoxic	Туре		Rectangular Tank		
	Reactor	Reactor	Spec.	W14.4m x L22.0m x H5.0 x 4	W14.4m x L22.0m x H5.0 x 6	W14.4m x L22.0m x H5.0 x 8	
		Aerobic	Туре	Rectangular Tank			
		Reactor	Spec.	W14.4m x L90.0 x H5.0m x 4	W14.4m x L90.0 x H5.0m x 6	W14.4m x L90.0 x H5.0m x 8	
		Second		Gravity Circular Tank			
	Sedimentation Tank		Spec.	D30.0m x H3.5m x 4	D30.0m x H3.5m x 6	D30.0m x H3.5m x 8	
	Disin	Disinfection		Chlorine Disinfection			
	Facility		Spec.	W3.0m x L25.0m x H3.0m x 4	W3.0m x L25.0m x H3.0m x 6	W3.0m x L25.0m x H3.0m x 8	
	Thic	Thickening		Mechanical Thickening			
	Facility		Spec.	70m³/hr x 4	70m³/hr x 6	70m³/hr x 8	
			Туре	-	Anaerobic Mesophilic Digestion		
Sludge Treatment Process	Stabilization Facility		Spec.	-	Acid Phase D7.0m x H10.0m x 3 Methane Phase D20.5m x H16.0m x 3	Acid Phase D7.0m x H10.0m x 4 Methane Phase D20.5m x H16.0m x 4	
	Dew	atering	Туре		Mechanical Dewatering		
		cility	Spec.	30m³/hr x 2	30m³/hr x 3	30m³/hr x 4	
_	Dan to	a alma a n t	Туре	Compr	ehensive Pre-Treatment Equ	uipment	
Faecal Sludge	Pre-tr	eatment	Spec.	50m ³ /hr x 2(1)	50m ³ /hr x 2(1)	50m ³ /hr x 2(1)	
Treatment Process	Thic	kening	Туре		Mechanical Thickening		
1 100033		cility	Spec.	3m³/hr x 2	3m³/hr x 2	3m ³ /hr x 2	
04	our Control Co	oility	Туре		Multi Stage Wet Scrubber		
Odd	our Control Fa	Cility	Spec.	500m³/min x 3	500m³/min x 4	500m³/min x 5	

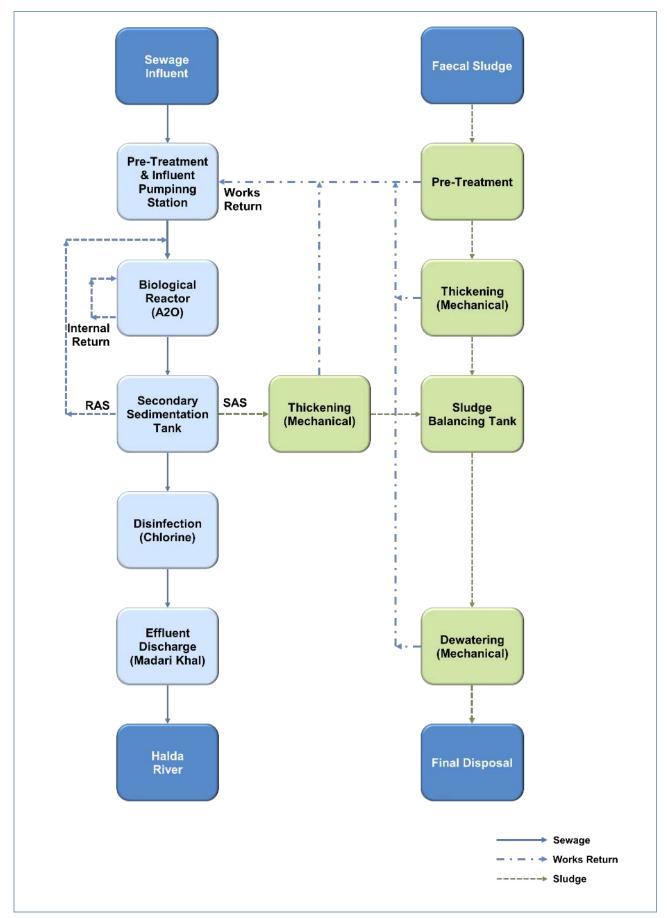


Figure 1-3 Process Flow Diagram of Phase 1

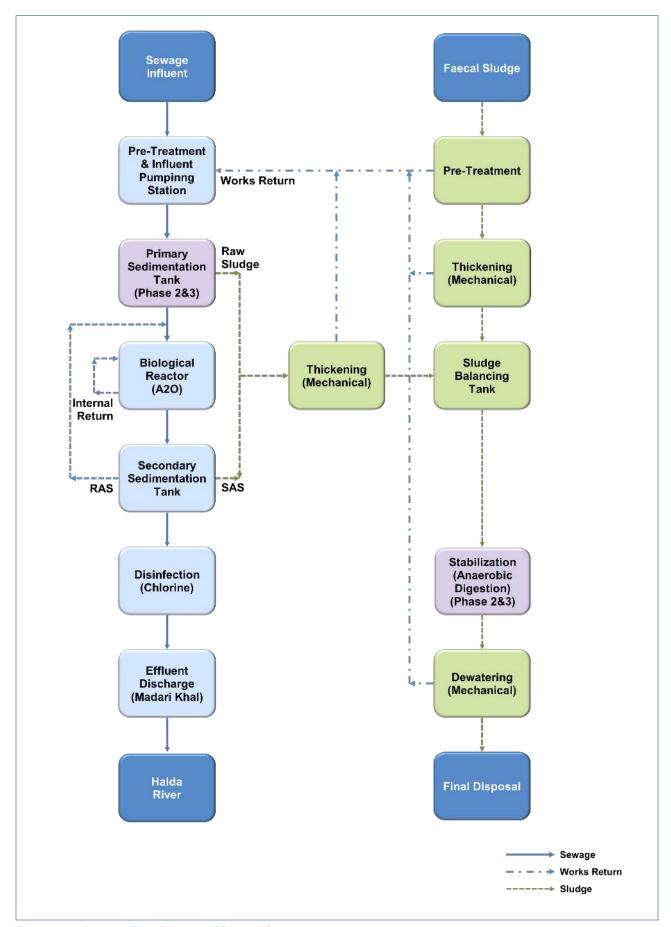


Figure 1-4 Process Flow Diagram of Phase 2&3

1.4.1.4 Proposed Site of Sewage Treatment Plant

Table 1-9 Review of Proposed Site of Sewage Treatment Plant

Table 1 0 Trevier	Vor Froposcu Oile of Gewage Treatment Flant
Category	Description
Land Acquisition	It has been owned by CWASA since 1960s, so the land acquisition is not required.
Resettlement Action Plan	 There are some illegal residents and public facilities such as schools and mosques. → Resettlement action plan shall be prepared during the detailed design stage by CWASA.
Treated	It is located more than 10km from Karnaphuli River and Halda River.
Effluent Discharge	Treated effluent will be discharged to Madari Khal and final receiving water body will be Halda River.
Future Expansion	Sewage treatment plant with a capacity of Q=120,000m3/d for the final targe year of 2070 can be constructed in the A3 side of the proposed site.
Availability of Utility	There is no water supply in the site & Ward No.1, so deep tube well will be utilized for the water supply of the STP.
Service	Electrical power will be supplied from the 33kV sub-station located 1km from the site.
Accessibility	• It is located next to N106 road, so it is easy to access the site for the O&M vehicles and faecal sludge collection vehicles.



Figure 1-5 Proposed Site of Sewage Treatment Plant

1.4.1.5 Layout of Sewage Treatment Plant

Option study of layout of sewage treatment plant is presented as below. Both options can accommodate the all facilities of STP up to Phase 3 in the final target year of 2070 in the proposed site.

- Option-1: Sewage treatment plant will be located in the on the right side of the N106 road (A3 site)
- Option-2: Sewage treatment plant will be located in the on the left side of the railway (A1 site)

As a result of the option study, Option-1 is selected because it is easy for O&M vehicles and faecal sludge collection vehicles to access to the STP.

Table 1-10 Option of Layout of Sewage Treatment Plant

Category	Option-1	Option-2
Summary	Lay out on the right side of the N106 road (A3 site)	Lay out on the left side of the railway (A1 site)
Site Status	The state of the s	N N N N N N N N N N N N N N N N N N N
Required Area	• 80,000m ²	Same as left
Hydraulic Aspects	Hydraulic flow of sewage treatment process is gravity after inlet pumping station	Same as left
Layout Aspects	 Sewage, sludge process and architectural building is planned separately. The remaining site can be used as environmental infrastructure in the future. Compared to Option-2, the length of the inlet and outlet sewer is shorter. 	Compared to Option-1, the length of the inlet and outlet sewer is longer.
O&M Aspects	Easy access to Sewage treatment plant from NR106 road Ease of maintenance with systemization Good access for maintenance vehicle to each facility	It is somewhat difficult to enter the sewage treatment facility by entering on the left side of the railway
ESIA	• Illegal residence in some houses (45 households)	Illegal residence in some houses (15 households)
Aspects Selection	0	
Colodion		

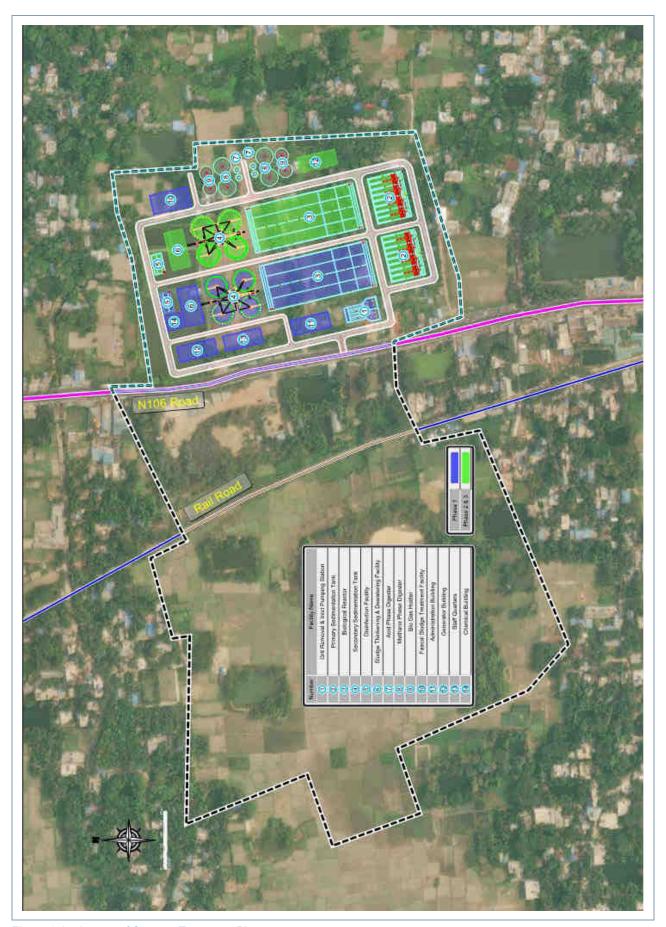


Figure 1-6 Layout of Sewage Treatment Plant

1.4.1.6 Treated Effluent Discharge

As the proposed site of sewage treatment plant is located in the middle of the CCC, option study of treated effluent discharge is presented to identify more rational and suitable option.

- Option-1: treated effluent is discharged by gravity flow to the Madari Khal which is located about 0.5km from STP site and final receiving water body is Halda River.
- Option-2: treated effluent is discharged by pumping to the Shitol Jharna Khal which is located about
 7.0km from STP site and final receiving water body is Karnaphuli River.

As a result of the option study, Option-1 is selected for the treated effluent discharge option through the discussion with the CWASA by considering the site condition, financial and other factors. It is planned to obtain the environmental license through the environmental impact assessment during the detailed design stage.

- CAPEX and OPEX of Option-2 is much higher than Option-1, because additional effluent pumping station & about 7.0km of effluent discharge pipe is required for the Option-2 and OPEX is also required to operate a pumping station.
- Treated effluent will satisfy the standard Sewerage discharge of DOE, so it will contribute to improve the water quality of river and to preserve the ecosystem of river.
- Treated effluent discharge point of STP in Madari Khal is about 7.6km away from the intake facility of Modunaghat WTP and about 11.5km away from the intake facility of Mohara WTP, so the impact of effluent will be negligible to the intake of WTP. For instance, 4.0km of standard distance from the intake of WTP is considered when designating a water source protection area in Korea.

Table 1-11 Option of Treated Effluent Discharge

Category	Option-1	Option-2
Discharge Point	Madari Khal	Shitol Jharna Khal
Receiving Water Body	Halda River	Karnaphuli River
Discharge Pipe	D1000mm, L=0.5km	D1000mm, L=7.0km
Effluent Pumping Station	-	26.1 m³/min x 2(1) + 13.0 m³/min x 2
CAPEX	Discharge Pipe: 385,175 USD	Discharge Pipe: 5,392,000 USDDischarge Pump Station: 1,563,000 USDTotal: 6,955,000 USD
OPEX	-	Electricity Cost: 200,000 USD/year
Selection	0	

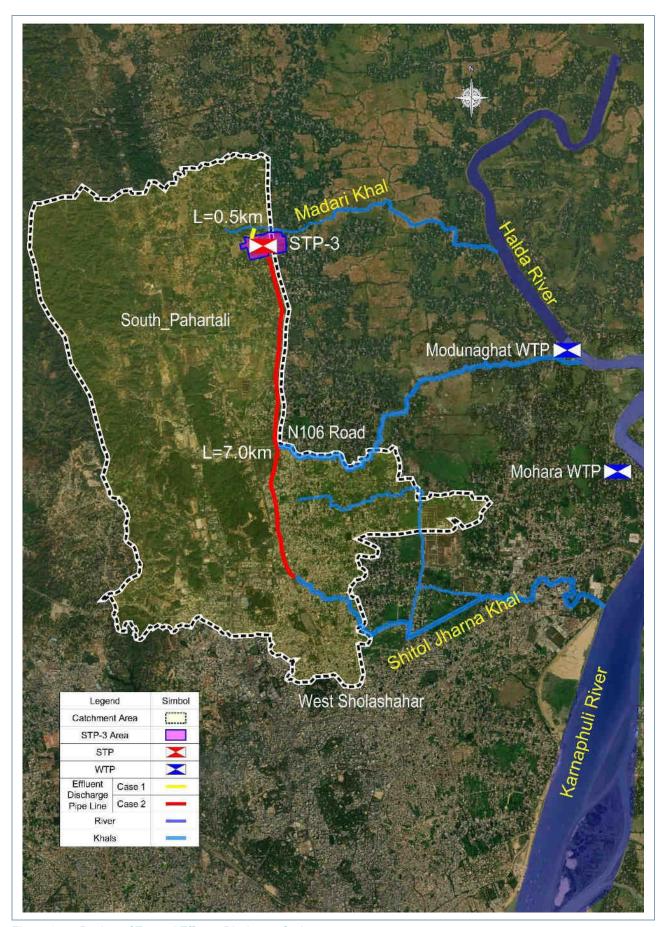


Figure 1-7 Review of Treated Effluent Discharge Options

1.4.1.7 Final Disposal of Sludge Cake

CCC operates two municipal solid waste landfills in Arefin Nagar and Halishahaar. Due to the lack of capacity of the existing landfills, CCC are planning for the alternative option for the solid waste management, but site selection is difficult due to the land acquisition and complaints from local residents.

There are many options to consider as the final disposal of sludge cake, but in reality, landfill is considered the most feasible option. But there is no landfill site to cater the sludge cake from Catchment-3 in CCC. Since there are currently 4 sewerage projects in progress in addition to this EDCF project in Chattogram City, CWASA have to set up the long-term perspective plan of sludge cake disposal in the consideration of whole 6 catchments of CCC.

Table 1-12 Municipal Solid Waste Landfills of Chattogram City



Table 1-13 Option of Final Disposal of Sludge Cake

able 1-13 Option of Final Disposal of Studge Cake							
Category	Landfill	Incineration	Composting				
Introduction	Landfill after Thickening and mechanical Dewatering	 Incineration after thickening and dewatering Incinerated ash is disposed of at a nearby landfill 	Production of effective products by fermentation after thickening and dewatering				
Advantage	No additional facilities The processing cost is relatively low No additional operation management required	Low pollution load on the environment Possible to generate electricity using recovered heat	Generation of effective products such as land improvement agents Reduce operating and management costs by selling effective products				
Disadvantage	Need to secure an alternative landfill due to insufficient capacity of the existing landfill	High facility investment cost Operation management is difficult, so a separate manager is required High operating cost	 Demand is limited due to the prejudice for the sludge cake Facility investment and operation management cost are high Operation management is difficult, so a separate managing is required 				
Select	0						

1.4.1.8 Reserve Facilities for Sludge Treatment

Option study of reserve facilities for sludge treatment such as sludge drying bed, faecal sludge treatment plant and temporary sludge cake storage facility is presented to reduce the operation & maintenance cost of sewage treatment plant as below.

- Sludge drying bed can be used for a sludge thickening and dewatering instead of mechanical thickening and dewatering facility during dry season.
- Gravity faecal sludge thickening tank and constructed wetland can be used for a faecal sludge treatment instead of mechanical thickening and dewatering facility during dry season.
- Sludge cake storage facility can be used as a short-term plan for the final disposal of sludge cake.

As a result of the option study, reserve facilities for sludge treatment are not included in the project scope because the construction cost is about 12 US\$ million, so the initial investment cost is excessive and even considering the reduction in O&M cost, it is analyzed as economically not feasible.

Table 1-14 Reserve Facilities for Sludge Treatment

Category		Specification	Capacity	Construction Cost (US\$ thousands)
Sludge D	rying Bed	W20.0m x L40.0m x H0.7m x 48Nos.	26,880 m ³	7,539
Faecal Sludge	Thickening	W13.3m x L15.0m x H2.0m x 4Nos.	800 m ³	196
Treatment	Constructed Wetland	W20.0m x L25.0m x H1.0m x 2Nos.	1,000 m ³	191
Sludge Cake Storage Facility (A1 Site)		W20.0m x L40.0m x 1No.	46,000 m ²	4,171
То	tal			12,097

Sewage treatment plant will be located in the A3 site, sludge cake can be stored in the A1 site or A2 site as a tentative plan before CWASA set up the long-term perspective plan of sludge cake disposal.

Table 1-15 Storage Capacity in the STP Reserve Site

Category			Storage capacity	<i>'</i>	Sludge Cake	Storage Expectancy
		Area (m²)	Height (m)	Capacity (m³)	(2030, m ³ /d)	(year)
A1 Cito	With Reserve	46,000	1.5	69,000	121	1.6
A1 Site	Without Reserve	187,000	1.5	280,500	121	6.4
A2 Site		51,000	1.5	76,500	121	1.7

Process flow diagram and layout of reserve facilities for sludge treatment is as below.

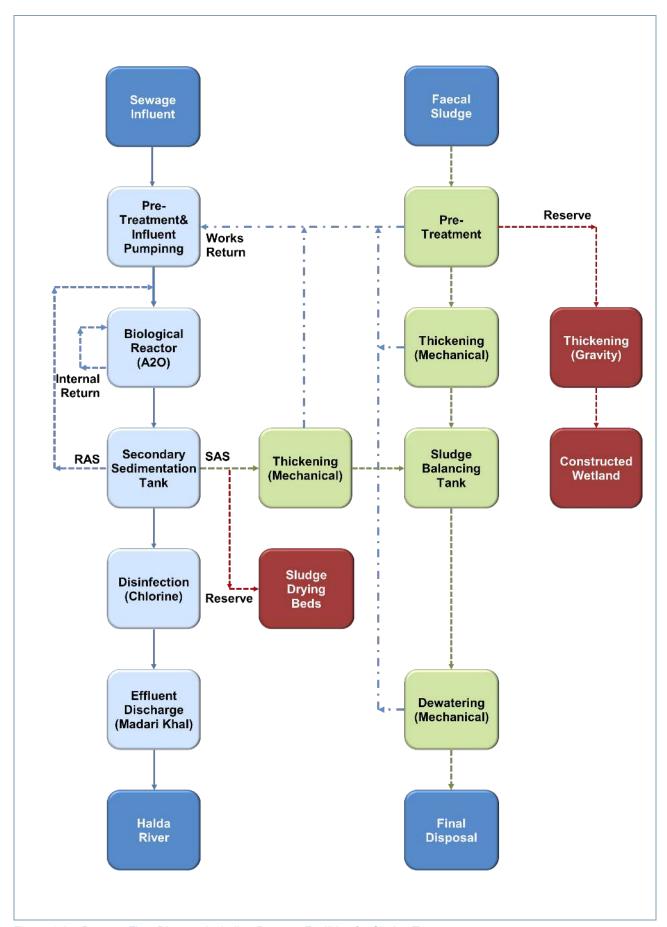


Figure 1-8 Process Flow Diagram including Reserve Facilities for Sludge Treatment

Figure 1-9 Layout of Reserve Facilities for Sludge Treatment

1.4.1.9 Faecal Sludge Management

1.4.1.9.1 Faecal Sludge Collection

Faecal sludge collection vehicle will be procured in the project to collect the faecal sludge from the on-site Sewage Serving area of Chattogram City, Hathazari Upazila and Raozan Upazila.

Table 1-16 Procurement of Faecal Sludge Collection Vehicle

Category	Capacity (m ³)	Quantity	Photo	Remarks
Type 1	10.0	1		
Type 2	5.0	2		
Type 3	3.0	2	DSK	
Type 4	0.7	2		
Type 5	0.5	7		

1.4.1.9.2 Faecal Sludge Treatment Plant

Faecal sludge treatment plant is planned to treat the faecal sludge after collection and transport to the sewage treatment plant. Faecal sludge will be co-treated with sewage sludge after pre-treatment and thickening. Anaerobic digestion as sludge stabilization process is planned to be introduced in Phase 2 in the consideration of the difficulty of O&M.

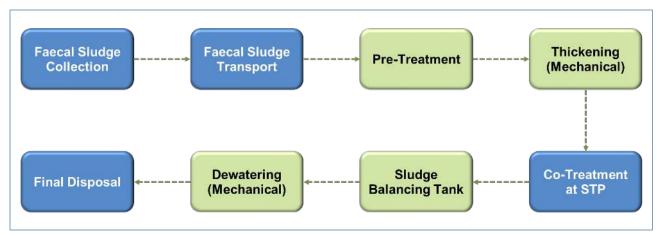


Figure 1-10 Faecal Sludge Treatment Process Diagram (Phase 1)

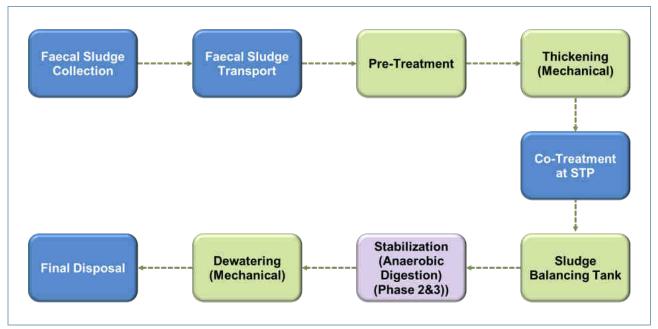


Figure 1-11 Faecal Sludge Treatment Process Diagram (Phase 2&3)

1.4.1.10 Energy Self-Sufficient Plan

Biogas power generation & Solar power generation is planned as a renewable energy source to contribute for the sustainable development by introducing green technology and reducing greenhouse gas emission.

- Anaerobic digestion for biogas power generation will be introduced in Phase 2.
- Solar panels will be installed on top of the biological reactors in Phase 1.

Energy self-sufficiency rate of STP is planned as 13.5% in Phase 1, 27.2% in Phase 2 and 23.9% in Phase 3 respectively and it is subject to change the project implementation of each phase.

Table 1-17 Detail of Solar Power Generation

Category	Description	Remarks
Required Area	3,100m ²	On top of the biological reactor
PV Module Capacity	567kW	315W/module X 1,800modules
Power Generation	207MW/year	567kW X 365days
Feed in Tariff Rate	0.096 USD/kWh	
Annual Income	USD 19,610	206,955kW/year X 0.096USD/kWh

Table 1-18 Energy Self-Sufficient Rate of STP

Category		Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)
Capacity of	STP (m³/d)	60,000	90,000	120,000
Power Consu	Power Consumption (MVA)		5.40	7.40
Dower Congretion	Bigas	-	0.90	1.20
Power Generation	Solar Power	0.57	0.57	0.57
(MVA)	Total	0.57	1.47	1.77
Energy Self-Sufficient Rate (%)		13.5	27.2	23.9

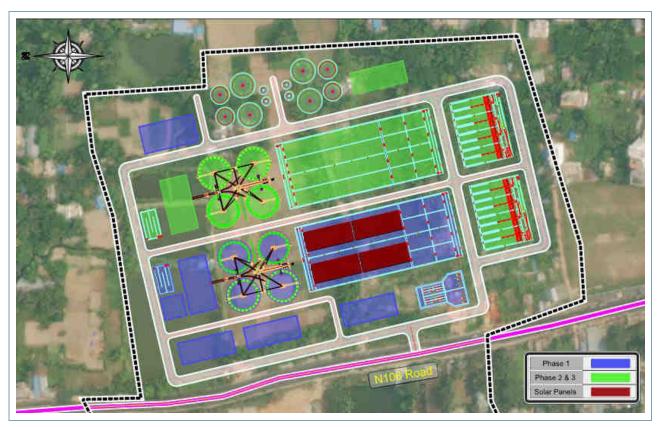


Figure 1-12 Layout of Solar Power Generation

1.4.1.11 Operation & Maintenance Vehicle

Operation & maintenance vehicle will be procured in the project for O&M of sewage treatment plant.

Table 1-19 Operation & Maintenance Vehicle

Туре	Capacity (m³)	Quantity	Photo	Remarks
Combined Backhoe/ Wheel Loader	0.6	3		
Truck with Hydraulic Hoist	7.5	2		
Truck with Hydraulic Hoist	20.0	1		

Note) Operation & Maintenance vehicles shall be confined to the vehicles controlled and operated by CWASA. Types of O&M vehicles is subject to change during the detailed design stage.

1.4.2 Sanitary Sewer & Pumping Station

1.4.2.1 Sanitary Sewer

Sanitary sewer is planned in five wards out of seven wards in Catchment-3 as priority where current water service coverage under CWASA is available in the consideration of project budget.

Table 1-20 Phase Plan of Sanitary Sewer (m)

Category	Total	Phase 1	Phase 2
Total	93,400	58,226	35,134
Trunk Sewer	8,900	8,900	-
Primary Sewer	58,991	29,335	29,656
Secondary Sewer	25,509	20,031	5,478

Table 1-21 Detail of Sanitary Sewer for Phase 1 (m)

Category	Total	Trunk Sewer	Primary Sewer	Secondary Sewer
Total	58,266	8,900	29,335	20,031
200mm	32,802	-	12,771	20,031
300mm	7,833	-	7,833	-
400mm	3,962	300	3,662	-
500mm	1,405	100	1,305	-
600mm	1,400	400	1,000	-
700mm	3,664	900	2,764	-
800mm	200	200	-	-
900mm	300	300	-	-
1,000mm	200	200	-	-
1,200mm	800	800	-	-
1,300mm	700	700	-	-
1,400mm	1,100	1,100	-	-
1,500mm	1,400	1,400	-	-
1,600mm	2,500	2,500	-	-

Table 1-22 Detail of Sanitary Sewer for Phase 1 by Excavation Depth (m)

Table 1-22 Detail of Sanitary Sewer for Phase 1 by Excavation Depth (m)										
Category	Total			Tre	nch				Trenchless	
Calegory	IOlai	Sum	~2m	2~3m	3~4m	4~5m	5~6m	Sum	6~10m	10m~
Total	58,266	45,962	15,802	16,517	6,599	4,313	2,731	12,304	10,504	1,800
200mm	32,802	32,322	15,402	12,299	2,814	1,407	400	480	280	200
300mm	7,833	6,839	400	2,418	1,100	1,940	981	994	894	100
400mm	3,962	3,396	-	1,000	1,430	466	500	566	566	-
500mm	1,405	1,305	-	300	755	100	150	100	100	-
600mm	1,400	1,200	-	400	500	200	100	200	200	-
700mm	3,664	800	-	100	-	200	500	2,864	2,864	-
800mm	200	-	-	-	-	-	-	200	200	-
900mm	300	-	-	-	-	-	-	300	300	-
1,000mm	200	-	-	-	-	-	-	200	200	-
1,200mm	800	-	-	-	-	-	-	800	800	-
1,300mm	700	-	-	-	-	-	-	700	700	-
1,400mm	1,100	-	-	-	-	-	-	1,100	900	200
1,500mm	1,400	-	-	-	-	-	-	1,400	1,300	100
1,600mm	2,500	100	-	-	-	-	100	2,400	1,200	1,200

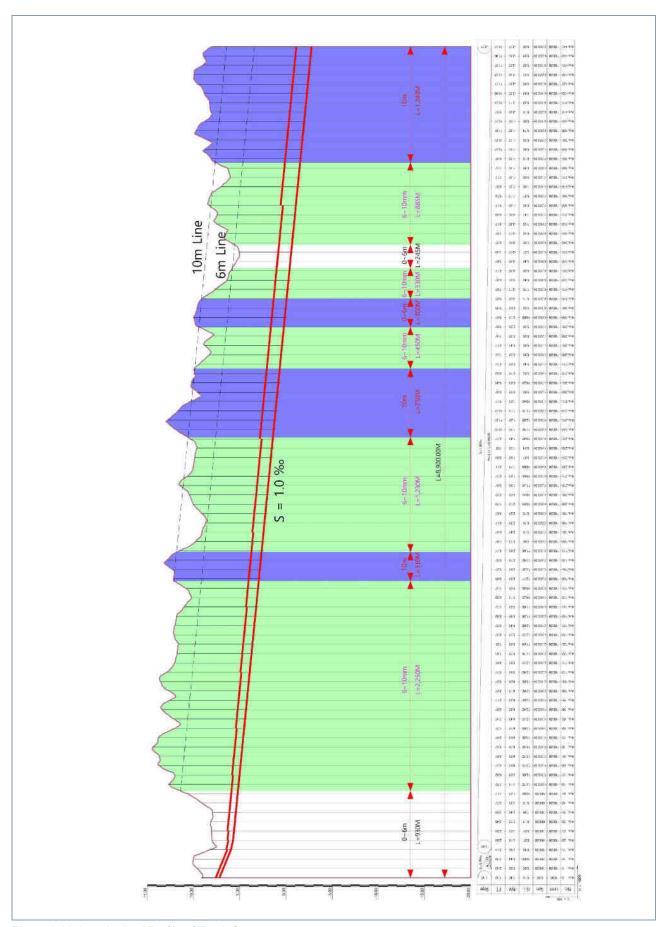


Figure 1-13 Longitudinal Profile of Trunk Sewer

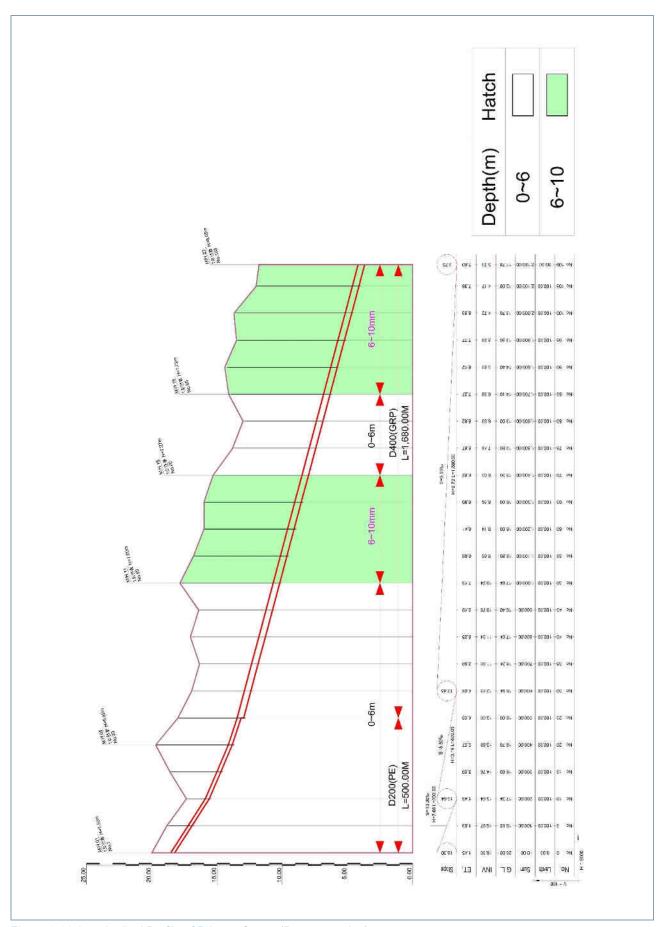


Figure 1-14 Longitudinal Profile of Primary Sewer (Representative)

1.4.2.2 Pumping Station (Phase 2)

Pumping station is planned for the low-lying area where gravity flow is not possible to transfer the wastewater to the higher elevation and it will be implemented in Phase 2 in the consideration of sewage service coverage of the project.

Table 1-23 Detail of Pumping Station

		amping otat						
Site	Name	Capacity (m³/min)	St Elev.	art Inv.	Elev.	nd Inv.	Max. Elev. (m)	Specification
Ward 2	PS-1	1,410	6.25	2.25	8.90	7.00	8.90	1.41m³/min x 9.75mH
Ward 2	PS-2	0.676	1.35	-2.65	6.50	4.50	7.70	0.68m³/min x 12.15mH
Ward 3	PS-3	0.676	4.60	0.60	9.30	7.00	9.30	0.68m³/min x 11.40mH
Ward 3	PS-4	0.676	4.10	0.10	10.00	8.30	10.00	0.68m³/min x 13.20mH
Ward 3	PS-5	0.310	4.30	0.30	13.40	11.20	13.40	0.41m ³ /min x 15.90mH
Ward 3	PS-6	0.155	23.30	19.30	29.00	27.30	29.00	0.16m ³ /min x 13.00mH
Ward 7	PS-7	0.705	9.00	5.00	14.00	5.83	14.00	0.71m ³ /min x 13.00mH

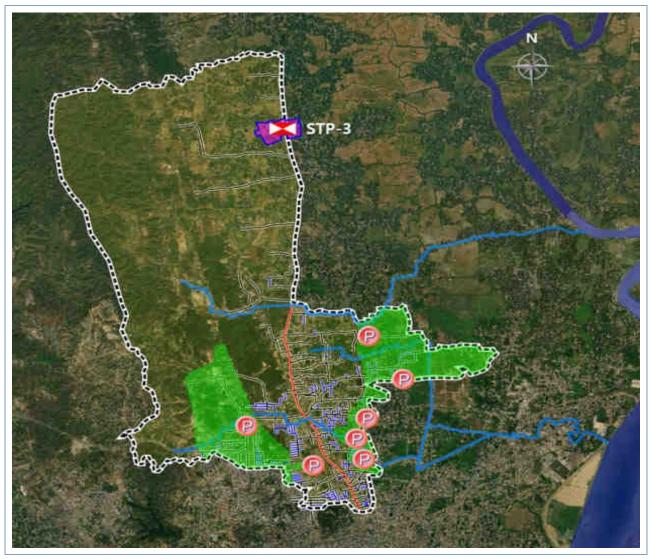


Figure 1-15 Location of Pumping Station

1.4.2.3 Household Connection

Household connection survey is conducted in the feasibility study for randomly selected 100 houses to categorize the household connection types as per the buildings in the project area for the project cost estimation. Detail household connection survey shall be implemented in the detailed design stage.

Table 1-24 Results of Household Connection Survey (Nos.)

Category	Building Type	Survey Results	Plan of This Project
Type 1	Residential Building with 8 or more floors	13	1,200
Type 2	Residential Building with 2-7 story	63	6,000
Type 3	Residential Building with single story	11	2,000
Type 4	Commercial Building	13	800
Total		100	10,000

Table 1-25 Phase Plan of Household Connection

Category	Unit	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Projected Population	pers.	473,904	598,614	810,008	1,048,808	
Sewage Service Coverage	%	60.0	65.0	72.5	80.0	
Sewage Service Population	pers.	284,342	389,099	587,254	839,046	
Household Connection	Nos.	10,936	14,965	22,586	32,271	26 pers. per connection

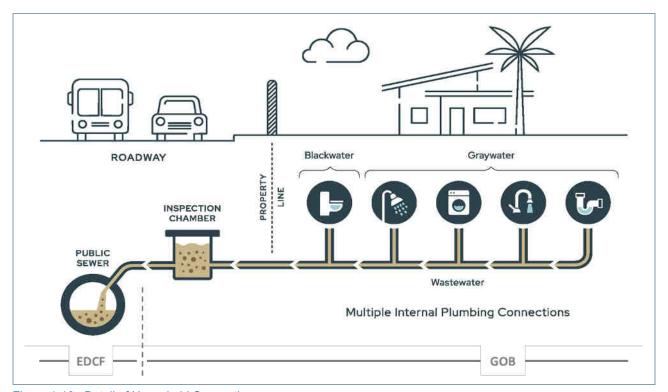


Figure 1-16 Detail of Household Connection

1.5 Project Executing Agency

1.5.1 Project Implementation Organization

Chattogram Water Supply and Sanitation Authority (CWASA) will be the Project Executing Agency (PEA) for the Project and will be in charge of planning, implementation, management, supervision, and coordination of the Project and forwarding relevant reports to the KEXIM. CWASA plans to establish a project management organization (PMU) during the project implementation period after the loan approval.

Table 1-26 R&R of Project Implementation Organizations

Organization	Roles and Responsibilities
PEA (CWASA)	 Overall day-to-day project management, monitoring and evaluation Establishes and maintains Project Management Unit (PMU) Provides technical and institutional capacity building support Reports to KEXIM
PMU in CWASA	 Responsible for overall project management, implementation and monitoring Monitors and ensures the compliance of covenants, particularly timely submission of audited project accounts and compliance with safeguard requirements Maintaining project accounts and project financial records Reviews the reports submitted by consultant with respect to detailed design, costs, safeguards, financial, economic, and social viability Prepares, with the support of the consultant, bidding documents, request for proposals, bid evaluation reports and negotiations Serves as point of contact with KEXIM, maintains project documents, and submits timely reports (quarterly progress reports and project completion report) to KEXIM Organizes project orientation between stakeholder group including Chattogram municipality by elaborating scope of the project and sharing about their participation
MoF	Financial oversight. Ensures flow of funds to the project execution agency to ensure adequate budget for successful implementation of the project
DoE	Regulator for wastewater management and pollution control Monitors compliance with environmental regulation
KEXIM	Loan approval and financial support Execution of project expenses for purchase approval, etc Reviews executing agency and implementing agency's

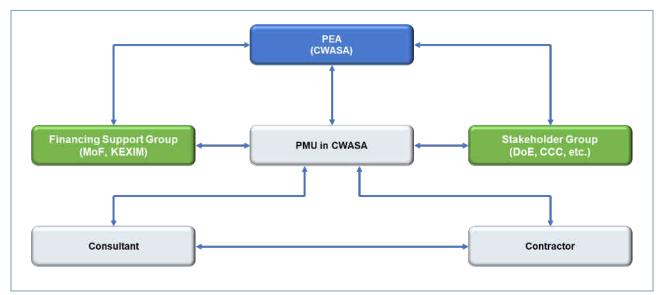


Figure 1-17 Project Organization Structure

1.5.2 Project Management Unit

CWASA plans to establish a project management organization (PMU) during the project implementation period after the loan approval. PMU of the project will be composed of 24 personnel, with a superintending engineer serving as the team leader, engineers in civil, mechanical, electrical & instrumentation, sanitary sewer section and supporting staffs as below.

Table 1-27	Porconnol C	omposition	of DMII
Table 1-27	Personnei C	ombosilion	OI PIVIU

No.	Category	No. of Person	Remarks
	Superintending Engineer (Project Director)	1	
	Deputy Project Director	1	
Technical	Executive Engineer	4	
Staff	Assistant Engineer	4	
	Sub-Assistant Engineer	8	
	Sub-Total	18	
	Office Manager	1	
	Accountant	1	
Supporting	Computer Operator	1	
Staff	Office Assistant	2	
	Driver	6	
	Sub-Total	11	
	Total	29	

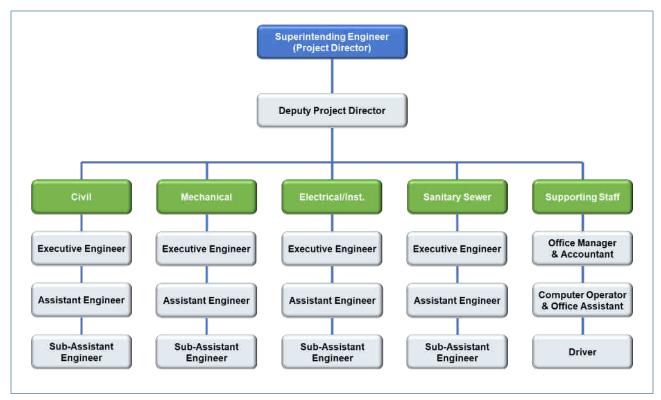


Figure 1-18 PMU Organization Chart

1.6 Project Cost Estimate

1.6.1 Introduction

Project cost is estimated at US dollar (USD) in accordance with 'EDCF Feasibility Study Guideline (March 2022)' and it is classified into EDCF portion and Government of Bangladesh portion.

Project cost is composed of direct project cost and indirect project cost. Components of direct project cost are construction cost, commissioning & training cost, O&M support cost after construction completion, consulting service cost, physical and price contingencies. Components of indirect project cost are Taxes & duties, land acquisition & resettlement cost, project management cost and EDCF service charge.

- Construction cost includes the material and construction costs of the sewerage system such as sewage treatment plant, sanitary sewer, Household Connection, faecal sludge treatment plant, O&M vehicle.
- Commissioning & Training cost covers the training of the operating staffs and commissioning of sewerage system for six months before construction completion.
- O&M support cost covers the training of the operating staffs for two years after construction completion.
- Consulting service cost covers a) remuneration of foreign and local engineers and b) out-of-pocket expenses during the detailed design, bidding support and construction supervision.
- Contingencies are made up of physical and price contingencies.
 - Physical contingency is calculated as 2 % of a total amount of EDCF loan.
 - Price contingency is calculated as 8 % of a total amount of EDCF loan.
- Tax and duties cover Value Added Tax, Advance Income Tax and Custom Duty.
- Land acquisition and resettlement cost covers the land acquisition cost of proposed site of STP and resettlement cost for the local residents.
- Project management cost covers the remuneration & out-of-pocket expenses of PMU during project implementation period.
- EDCF service charge is the loan handling fee to operate the EDCF loan and it is estimated as 0.1% of a total amount of EDCF loan.

In comparison of exchange rate between the average of previous 30 days (02.08.22~01.09.22) from the F/S contract (01.09.22) and the current day (10.05.23), exchange rate is fluctuated 0.3% for KRW to USD, 11.9% for KRW to BDT, and 13.1% for USD to BDT. In this project, the average exchange rate of previous 30 days from the date of F/S contract is applied in accordance with EDCF guideline.

- 1 USD = 94.95 BDT
- 1 USD = 1,325.50 KRW
- 1 BDT = 13.96 KRW

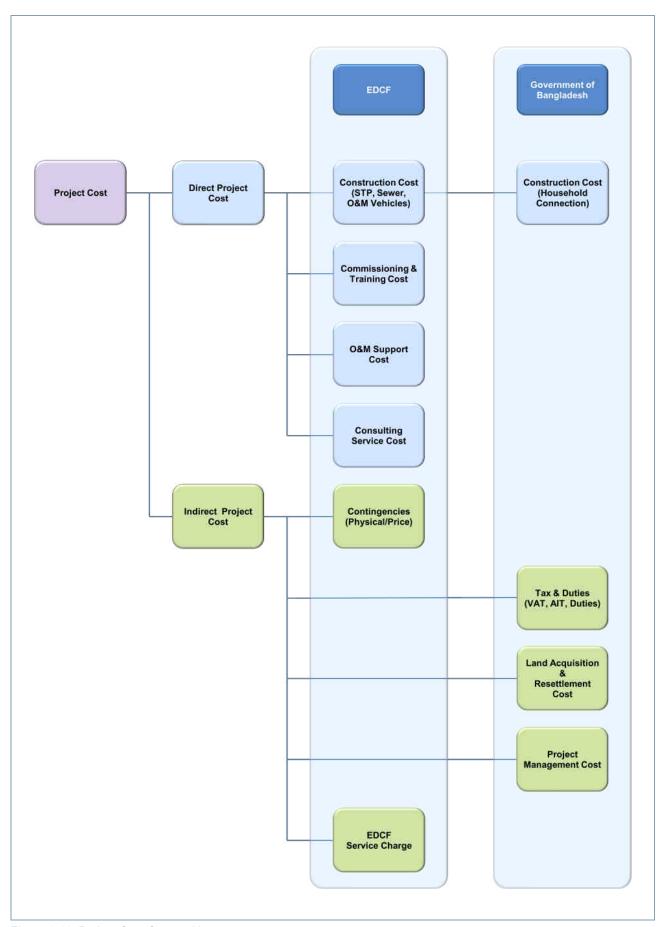


Figure 1-19 Project Cost Composition

1.6.2 Project Cost Components by Currency

Project cost components by currency is prepared in accordance with 'EDCF Feasibility Study Guideline (March 2022)' and it is classified into EDCF and Government of Bangladesh with the consideration of place of origin of materials and equipment and construction works of the sewerage system. In the feasibility study, it is not possible to specify the place of origin of the mechanical, electrical and instrumentation equipment, so it is planned to procure 70% of in foreign currency (Korea) and 30% in third countries.

Table 1-28 Project Cost Components by Currency

able 1-28 Project Cost Components by Currency EDCF							
Cat	tegory	Foreigr		Local	GOB		
	Civil Works	• Overhead & profit • Sanitary Sewer (GRP)	3 rd Countries	Ready-mixed concrete Reinforcing bar Aggregates & other construction materials Earthworks, structural works and trench works Pavement works Architectural works Landscaping works Sanitary Sewer (HDPE) Manhole	Construction Cost (Household Connection)		
Construction Cost	Mechanical Works	 Pre-treatment facility (Sludge, Faecal Sludge) Inlet pumping station facility Biological reactor facility Sedimentation facility Sludge thickening facility Sludge dewatering facility Odour control facility Chemical dosing facility 		Local transport Piping & Installation			
Electrical Works		Incoming power facility Power distribution system Stand-by power system Power control facility		Local transport Piping & Installation			
	Instrumentation Works	Monitoring and control facil Measuring instrument	lity	Local transportPiping & Installation			
0	thers	Commissioning & Contingencies Training cost (physical/price) O&M support after construction completion Consulting service cost Contingencies (physical/price) EDCF service charge		Consulting service cost Commissioning & Training cost O&M support after construction completion Contingencies (physical/price)	Taxes & duties Land acquisition & resettlement cost Project management cost		

Note) Project cost component is subject to change during the detailed design stage & construction stage.

1.6.3 Total Project Cost

1.6.3.1 Total Project Cost

In the total project cost of US\$ 228,948 thousands, the EDCF will provide a loan of US\$ 191,438 thousands and the GOB will bear the remaining US\$ 37,510 thousands as below.

Table 1-29 Total Project Cost (US\$ thousands)

Table 1-29 Total Project Cost (US\$ thousan	ius)	ED	CF				
Cotomomi	Category Foreign GOB						
Category	Korea	3rd	Local	Sub Total	GOB	Total	
		Countries					
1. Construction Cost	37,532	7,114	110,945	155,591	6,515	162,106	
1.1 Preliminary	276	-	1,566	1,842	-	1,842	
1.2 Sewage Treatment Plant	20,277	7,114	30,290	57,681	-	57,681	
a) Civil Works	2,923	-	16,561	19,484	-	19,484	
b) Architectural Works	755	-	4,280	5,035	-	5,035	
c) Mechanical Works	11,275	4,832	5,120	21,227	-	21,227	
d) Electrical Works	3,316	1,421	3,135	7,872	-	7,872	
e) Instrumentation Works	2,009	861	1,194	4,064	-	4,064	
1.3 Sanitary Sewer	16,979	-	78,269	95,248	-	95,248	
a) Trunk Sewer	9,622	-	41,927	51,549	-	51,549	
- Open Trench	397	-	709	1,106	-	1,106	
- Trenchless	9,224	-	41,218	50,442	-	50,442	
b) Primary Sewer	6,380	-	30,802	37,182	-	37,182	
- Open Trench	3,766	-	15,994	19,760	-	19,760	
- Trenchless	2,613	-	14,808	17,421	-	17,421	
c) Secondary Sewer	978	-	5,540	6,518	-	6,518	
- Open Trench	978	-	5,540	6,518	-	6,518	
1.4 Household Connection	-	-	-	-	6,515	6,515	
1.5 O&M Vehicles	-	-	820	820	-	820	
2. Commissioning & Training	420	-	831	1,251	-	1,251	
3. O&M Support	1,652	-	444	2,096	-	2,096	
4. Consulting Service	10,255	-	2,911	13,166	-	13,166	
4.1 Detailed Design & Bidding Support	3,938	-	1,462	5,400	-	5,400	
4.2 Construction Supervision	6,317	-	1,449	7,766	-	7,766	
5. Direct Project Cost (1+2+3+4)	49,859	7,114	115,131	172,104	6,515	178,619	
6. Contingencies	5,546	791	12,806	19,143	-	19,143	
6.1 Physical Contingencies	1,109	158	2,561	3,828	-	3,828	
6.2 Price Contingencies	4,437	633	10,245	15,315	-	15,315	
7. Taxes and Duties	-	-	-	-	28,092	28,092	
7.1 Value Added Tax (VAT)	-	-	-	-	13,895	13,895	
7.2 Advance Income Tax (AIT)	-	-	-	-	9,264	9,264	
7.3 Custom Duties	-	-	-	-	4,933	4,933	
8. Land Acquisition & Resettlement Cost	-	-	-	-	500	500	
9. Project Management Cost	-	-	-	-	2,403	2,403	
10. EDCF Service Charge	191	-	-	191	-,	191	
11. Total Project Cost (5+6+7+8+9+10)	55,596	7,905	127,937	191,438	37,510	228,948	

1.6.3.2 Financing Plan

Out of the total project cost of US\$ 228,948 thousands, US\$ 191,438 thousands will be financed through loan from EDCF, of which Korean portion is US\$ 55,596 thousands, 3rd Countries portion is US\$ 7,905 thousands and local portion is US\$ 127,937 thousands while the GOB will bear the remaining US\$ 37,510 thousands.

EDCF will provide a loan for the components such as construction cost, commissioning & training cost, O&M support cost, consulting service cost, contingencies, EDCF service charge and GOB will bear the cost for the components such as construction cost for household connection, Taxes & duties, land acquisition & resettlement cost, project management cost. Financing plan of the project is summarized as follows.

Table 1-30 Financing Plan

		EDCF						
Cate	egory	ry Foreign				GOB	Total	
Juli	,90.7	Korea	3 rd Countries	Local	Sub Total	305	rotui	
Total Project Cos	t (US\$ thousands)	55,596	7,905	127,937	191,438	37,510	228,948	
Percentage (%)	EDCF	29.0	4.1	66.8	100.0	-	-	
	Total	24.3	3.5	55.9	83.6	16.4	100.0	

1.6.3.3 Annual Disbursement Plan

The project is to be implemented over 104 months taking into account the period required for project preparation, consultant selection, detailed design, bidding support, contractor selection and construction supervision. Annual Disbursement plan during project implementation period is as follows.

Table 1-31 Annual Disbursement Plan (US\$ thousands)

	Category	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Total
	1. Construction Cost	-	-	7,780	38,898	38,898	38,898	31,117	-	-	155,591
	2. Commissioning & Training	-	-	-	-	-	-	1,251	-	-	1,251
Е	3. O&M Support	-	-	-	-	-	-	356	1,048	692	2,096
D C	4. Consulting Service	-	4,608	1,580	1,580	1,975	1,975	1,448	-	-	13,166
F	5. Contingencies	-	-	957	4,786	4,786	4,786	3,828	-	-	19,143
	6. EDCF service Charge	-	5	10	45	46	46	37	1	1	191
	Sub-Total	-	4,613	10,327	45,309	45,705	45,705	38,037	1,049	693	191,438
	Construction Cost (Household Connection)	-	-			2,605	1,955	1,955	-	-	6,515
	2. Taxes & Duties	-	-	1,405	7,023	7,023	7,023	5,618	-	-	28,092
G O B	3. Land Acquisition & Resettlement Cost	-	500	-	-	-	-	-	-	-	500
Ь	4. Project Management Cost	-	240	360	384	409	409	360	120	121	2,403
	Sub-Total	-	740	1,765	7,407	10,037	9,387	7,933	120	121	37,510
Total Project Cost		-	5,353	12,092	52,716	55,742	55,092	45,970	1,169	814	228,948
Disb	Disbursement Rate (%)		2.34	5.28	23.03	24.35	24.06	20.08	0.51	0.36	100.00
Cum	ulative Disbursement Rate (%)	-	2.34	7.62	30.65	54.99	79.06	99.13	99.65	100.00	-

1.7 Economic & Financial Feasibility Analysis

1.7.1 Economic Feasibility Analysis

1.7.1.1 Introduction

Economic feasibility analysis is compared and analysed by converting cost and benefit into monetary value to estimate economic feasibility. Benefit/cost ratio (B/C), net present value (NPV), and internal rate of return (IRR) are generally used for evaluation index of economic analysis.

The period of 68 months from consultant selection to construction completion and 40 years of operation of the sewage treatment plant after construction completion are the basic analysis period. A discount rate of 12% is applied in accordance with the GOB internal policy.

1.7.1.2 Cost Estimate

1.7.1.2.1 Project Cost for Economic Feasibility Analysis

In the economic feasibility analysis, project cost excluding the price contingencies, tax & duties are considered only according to the EDCF guideline.

Table 1-32 Project Cost for Economic Feasibility Analysis (US\$ thousands)

	EDCF									
Category	Foreign				GOB	Total				
	Korea	3 rd Countries	Local	Sub Total						
1. Project Cost	55,596	7,905	127,937	191,438	37,510	228,948				
2. Price Contingencies	4,437	633	10,245	15,315	-	15,315				
3.Tax & Duties	-	-	-	-	28,092	28,092				
Applied Cost	51,159	7,272	117,692	176,123	9,418	185,541				

1.7.1.2.2 O&M Cost

Table 1-33 O&M Cost (US\$)

Category	O&M	Cost	Remarks
Calegory	Annual	For 40 Years	Remarks
Electricity cost	2,201,741	88,069,640	
Chemical cost	782,560	31,302,400	
Labor cost	293,646	11,745,840	
Consumables & Repair Cost	228,401	9,136,040	
Replacement Cost	1,658,150	66,326,000	
Administrative Cost	104,409	4,176,360	
Total	5,268,907	210,756,280	

1.7.1.3 Benefit Estimate

Table 1-34 Summary of Benefit (US\$ thousands)

Table 1 of Carimaly of Benefit (Coop areasands)					
Year	Total	Water Quality Improvement	Living Standard Improvement	Septic Tank Reduction	Public Hygiene Improvement
2030	19,783	15,649	1,109	144	2,881
2031	20,664	16,200	1,149	333	2,982
2032	21,357	16,752	1,188	333	3,084
2033	22,048	17,303	1,227	333	3,185
2034	22,740	17,855	1,266	332	3,287
2035	23,432	18,406	1,305	333	3,388
2036	24,218	19,008	1,347	364	3,499
2037	24,972	19,609	1,390	363	3,610
2038	25,728	20,211	1,433	363	3,721
2039	26,484	20,813	1,475	364	3,832
2040	27,237	21,414	1,518	363	3,942
2041	27,237	21,414	1,518	363	3,942
2042	27,237	21,414	1,518	363	3,942

Note) Benefit is assumed as constant after year 2040.

1.7.1.4 Economic Feasibility Analysis

As a result of the economic feasibility analysis B/C ratio is analyzed as 1.31 on discount rate of 12%, with total benefit US\$ 197,610 thousands, total cost US\$ 150,731 thousands, net present value US\$ 46,879 thousands.

Table 1-35 Result of Economic Feasibility Analysis (US\$ thousands)

Category	Category Benefit at Present Value		Net present value	B/C Ratio	
6%	377,103	209,190	167,913	1.80	
7%	331,507	195,458	136,049	1.70	
8%	294,225	183,838	110,387	1.60	
9%	263,419	173,861	89,558	1.52	
10%	237,706	165,181	72,525	1.44	
11%	216,037	157,536	58,501	1.37	
12%	197,610	150,731	46,879	1.31	

1.7.1.5 Sensitivity Analysis

In sensitivity analysis, B/C Ratio is analyzed as 1.02, NPV US\$ 2,472 thousands and E-IRR 12.39% and it shows that this project is economically feasible even in the worst scenario of Case 4 with 20 % cost increase and 20 % benefit decrease.

Table 1-36 Sensitivity Analysis by Variation of Benefit/Cost

	on the first by randition of bond			
Case	Sensitivity	NPV (US\$ thousands)	B/C Ratio	IRR (%)
Base		46,129	1.30	20.10%
Case 1	20% increase in costs	41,992	1.27	19.50%
Case 2	20% decrease in benefits	6,609	1.04	13.04%
Case 3	20% decrease in costs	50,268	1.34	20.67%
Case 4	Combination of case 1 and 2	2,472	1.02	12.39%

1.7.2 Financial Feasibility Analysis

1.7.2.1 Basic assumption

The basic assumption of the financial feasibility analysis is the same as for the economic feasibility analysis, but only the sewage fee is applied as the benefit instead of the economic benefit in economic feasibility, and price contingencies, taxes & duties, interest during construction considered for the cost as follows.

Table 1-37 Basic Assumption of Financial Feasibility Analysis

	Categoi	У	Assump	otion	Remarks	
Financing		EDCF	US\$ 191,439 thousands		 Construction cost Commissioning & training cost O&M support cost Consulting service cost Contingency EDCF service charge 	
rillanding	GOB			7,538 thousands	 Taxes & duties, Land acquisition & resettlement cost, Project management cost, Interest during construction 	
		Total	US\$ 228	8,977 thousands		
Repayment	I	Repayment method	Uniform principa repaym		Grace period: 15 years Term of loan: 40 years	
		Category	Wastewater Generation	Unit Cost		
	Sewage Tariff	Domestic Wastewater	36,006 m³/d	0.24 USD/m ³		
Revenue		Non-Domestic Wastewater	4,606 m³/d	0.50 USD/m³	Based on year 2029 Inflation applied	
	Solar Power Generation		Power Generation	Unit Cost		
	Solai i	ower Generation	206,955 kW/year	0.0952 USD/kWh		
		Electricity cost	US\$	3,176 thousands	• Annual	
		Chemical cost	US\$	1,129 thousands	• Annual	
Operating	O&M Cost	Labor cost	US	\$ 424 thousands	Annual	
Cost		Consumables& repair cost	US	\$ 329 thousands	Annual	
		Administrative cost	US\$ 151 thousands		Annual	
		Replacement cost		3,163 thousands	Every 15 years	
		Inflation	6.30	%		

1.7.2.2 Financial Feasibility Analysis

As a result of the financial feasibility analysis, it is analyzed that this project is not financially feasible to recover the investment cost with the revenue from sewage tariff & solar power generation.

Table 1-38 Financial Analysis Result

,		
Category	Result	Remarks
FIRR (%)	0.39%	Discount rate of 6.31%
FNPV (US\$ thousands)	(149,738)	

1.7.2.3 Sensitivity Analysis

The result of sensitivity analysis for the change of investment cost and operating cost is as follows.

Table 1-22 Sensitivity Analysis for the Change of Investment Cost & Operating Cost

Category	-55%	-35%	-15%	BASE	20%
Total Investment cost (US\$ thousand)	103,056	148,835	194,631	228,977	274,773
Total operating cost (US\$ thousand)	474,032	655,235	836,437	972,339	1,153,542
Equity (US\$ thousand)	16,908	24,400	31,907	37,538	45,045
EDCF (US\$ thousand)	86,148	124,435	162,723	191,439	229,727
IRR	6.63%	4.11%	1.98%	0.39%	-1.99%
NPV	6,418	(50,365)	(107,150)	(149,738)	(206,523)
PI	1.05	0.74	0.58	0.49	0.41

The result of sensitivity analysis for the change of sewage tariff is as follows.

Table 1-23 Sensitivity Analysis for the Change of Sewage Tariff

Category	-20%	BASE	20%	70%	110%
Domestic	0.19 USD/m ³	0.24 USD/m ³	0.29 USD/m ³	0.41 USD/m ³	0.51 USD/m ³
Non-Domestic	0.40 USD/m ³	0.50 USD/m ³	0.60 USD/m ³	0.85 USD/m ³	1.05 USD/m ³
Equity (US\$ thousand)	37,538	37,538	37,538	37,538	37,538
EDCF (US\$ thousand)	191,439	191,439	191,439	191,439	191,439
IRR	-2.89%	0.39%	2.24%	5.03%	6.53%
NPV	(178,708)	(149,738)	(120,768)	(48,342)	9,599
PI	0.39	0.49	0.59	0.84	1.03

The result of sensitivity analysis for the annual increase of sewage tariff is as follows.

Table 1-24 Sensitivity Analysis of Annual Increase of Sewage Tariff

Category	BASE	2%	4%	6%	8%
Total Sewage Tariff (US\$ thousand)	1,236,806	2,271,037	4,223,407	7,912,081	14,871,659
IRR	0.39%	4.96%	7.95%	10.46%	12.75%
NPV	(149,738)	(57,591)	106,171	400,484	933,207
PI	0.49	0.80	1.36	2.36	4.16
Short Term loan occur	38 years	24 years	14 years	10 years	8 years

1.8 Environmental & Social Impact Assessment

1.8.1 Categorization

Initial environmental and social impact assessment is conducted to identify and analyse the predictable environmental and social negative impacts and risks caused by the project implementation in advance. It contributes to sustainable development by identifying the negative effects of the EDCF loan support project on the environment and local residents and avoiding and minimizing them.

- Bangladesh Categorization: The project is categorized as "Red" according to Bangladesh's Environmental Conservation Rules (1997) and ESIA is required during the project implementation.
- EDCF Categorization: The project is categorized as "Category B+" according to the EDCF Environmental Social Impact Analysis Risk Classification under the EDCF safeguard policy (2020), so it is likely to have substantial adverse environmental and social impacts and risks that are less adverse than those of category A projects and ESIA is required during the project implementation.

1.8.2 Environmental Impact Assessment

In Phase 1 as a target year 2040, daily average wastewater generation of sewage treatment plant is 55,574 m³/d is only 0.23% of 25,920,000 m³/d which is the lowest flow rate of Halda river and Treated effluent is discharged to Madari Khal and final receiving water body is Halda River.

Treated effluent discharge point of STP in Madari Khal is about 7.6km away from the intake facility of Modunaghat WTP and about 11.5km away from the intake facility of Mohara WTP, so the impact of effluent will be negligible to the intake of WTP. For instance, 4.0km of standard distance from the intake of WTP is considered when designating a water source protection area in Korea.

Treated effluent will satisfy the standard Sewerage discharge of DOE, so it will contribute to improve the water quality of river and to preserve the ecosystem of river. It is planned to obtain the environmental license through the environmental impact assessment during the project implementation.

1.8.3 Social Impact Assessment

Proposed site of sewage treatment plant has been owned by CWASA since 1960s, so the land acquisition is not required. However, there are illegal residents in the proposed site even though there no schools and mosques, resettlement action plan should be prepared by CWASA during the project implementation.

There is no requirement for the buffer zone from STP to the resident area in the environmental regulation of Bangladesh, odour control facility will be constructed in the STP and odour mitigation measures shall be analyzed in the ESIA during the project implementation.

Table 1-39 Land Use of Sewage Treatment Plant Site

No.	Category	Total	A1	A2	A3	Remarks
1	Common House (Tin-roofed)	49	9	6	34	
2	Common House (Brick building)	11	2	5	4	
3	Cattle Farm	8	-	3	5	
4	Two-story Building	2	-	2	-	
5	Three-story Building	2	-	-	2	
6	One-story Building	1	1	-		
7	CWASA Storage	1	-	1	-	
8	School	1	1	-	-	
9	Toilet	1	1	-	-	
10	Religious Facility	2	1	1	-	
11	Cemetery	4	3	1	-	
12	Pond	25	-	-	-	
13	Khal	1	-	-	-	
14	Dirt Road	3	-	-	-	
15	Paved Road	4	-	-	-	
16	BFS Road	1	-	-	-	
17	RCC Road	2	-	-	-	
18	RHD Road	1	-	-	-	
19	Railroad	1	-	-	-	
20	Forest	-	-	-	-	
21	Bridge	2	-	-	-	
22	Culvert	-	-	-	-	
23	Street Lamp	26	-	-	-	
24	Tree	5000 +	-	-	-	
25	Rice Field	210	-	-	-	



Figure 1-20 Proposed Site of Sewage Treatment Plant

1.9 Project Monitoring Framework

EDCF sets up the logical framework as the project monitoring framework (PMF) and it outlines the impact, outcomes and outputs of the EDCF projects and it is the basic project management tool for development results by including monitoring indicators and indicator definitions, targets, and primary beneficiary information.

Table 1-40 Project Monitoring Framework

Category	Indicators	Base	Targets	Source	Assumptions/ Risks		
Impact Improvement of water quality in river and	Improvement of water quality in river	Organics in river (BOD, COD, SS) (6 months before construction completion)	Improvement of water quality in river (BOD, COD, SS) (5 years after construction completion)	CWASA O&M Report	<assumption> Policy support of GOB Willingness of the PEA <risk> Lack of O&M resources and </risk></assumption>		
Reduction of vulnerability to climate change	Greenhouse gas emission reduction	52,409 t CO²eq/year (2022)	27,642 t CO ² eq/year (5 years after construction completion)	CWASA O&M Report	technology		
	Reduction of vulnerable population to climate change	N/A (2022)	Sewage service population 334,435 (5 years after construction completion)	CWASA O&M Report			
Outcomes Improvement of living	Sewage service N/A coverage (2022)		60.0% (2 years after construction completion)	CWASA O&M Report	 Assumption> Normal operation of the facility by the input of professional operating 		
standard and sanitation of inhabitants in the project	Daily wastewater treatment of wastewater treatment plant	treatment of (2022) wastewater		CWASA O&M Report	personnel Completion of household connection construction		
area	Compliance with effluent discharge standard	Influent Quality BOD: 322mg/L COD: 644mg/L SS: 386mg/L T-N: 76mg/L T-P: 15mg/L	BOD: 20mg/L COD: 100mg/L SS: 30mg/L T-N: 40mg/L T-P: 10mg/L (After construction completion)	CWASA O&M Report	<risk></risk>Delayed response to facility failureDelay of household connection construction		
	Number of STP operation suspension related to climate disasters	N/A (2022)	Zero (2 years after construction completion)	CWASA O&M Report			
Outputs Construction of sewerage system with climate resilience	Construction of sewerage system with climate resilience	N/A (2022)	• STP: Q=60,000m³/d • FSTP: Q=100m³/d • Sanitary Sewer: L=58.3km • HHC: 10,000nos	Project Completion Report	 Assumption> Securing financial resources of PEA Efficient project management Completion of resettlement before construction Risk> Delay in approval/permission from relevant agencies Unexpected design changer 		

Monitoring

- Consultant for detailed design, bid preparation and construction supervision will be selected within 4 months after L/A.
- Contractor will be selected within 16 months after selection of the Consultant
- Construction will be completed within 48 months (including 6 months of training and commissioning)

Project Objective

- To increase sewage service coverage through construction of sewerage system
- To improve living standard and sanitation of inhabitants in the project area
- To improve river water quality and restore the ecosystem by sewage treatment

Primary Beneficiary

Definition and Management of Indicator

• People of Chattogram City, Hathazari Upazila and Raozan who inhabits in the project area

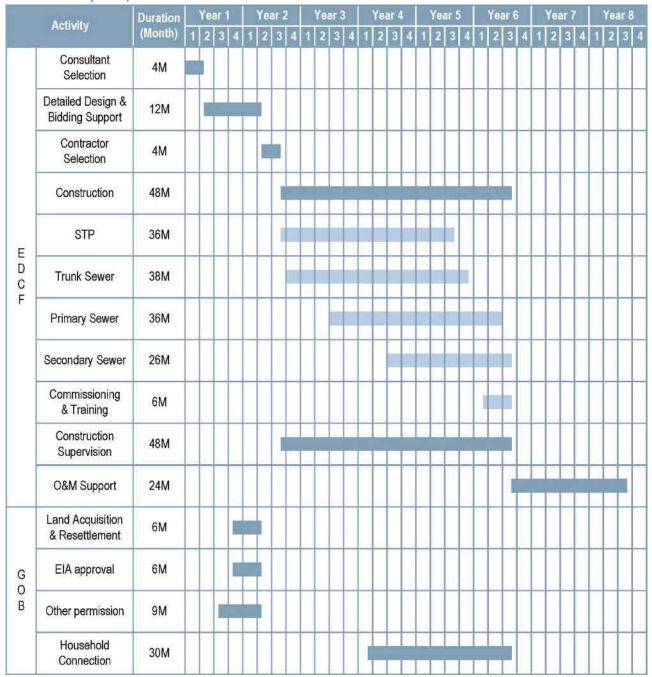
Indicator	Definition	Source	Managed by
Water quality in river	Water quality measurement of organics such as BOD, COD, SS in rivers	CWASA O&M Report	CWASA
Greenhouse gas emission reduction	Calculation method of 2006 IPCC G/L	CWASA O&M Report	CWASA
Reduction of vulnerable population to climate change	Sewage service population	CWASA O&M Report	CWASA
Sewage service coverage	Sewage service population / Total population	CWASA O&M Report	CWASA
Daily sewage treatment of sewage treatment plant	Average daily sewage treatment quantity	CWASA O&M Report	CWASA
Compliance with effluent discharge standard	Standard Sewerage discharge in environment conservation rules (2023, DOE)	CWASA O&M Report	CWASA
Number of STP operation suspension related to climate disasters	∑ (Number of STP operation of suspensions related climate change)	CWASA O&M Report	CWASA
Sewerage system with climate resilience	Infrastructure to convey and treat wastewater from its point of origin to a point of treatment and discharge	Project Completion Report	Consultant & Contractor
Sewage treatment plant	Facility to remove contaminants from wastewater to	Project Completion	Consultant &

Contractor

Report

1-44

produce an effluent that is suitable for discharge to the


public water body

1.10 Project Implementation Period

Project implementation period is planned as 92 months after loan approval as below. It may be extended upon the request of the GOB and with a prior consent from the KEXIM.

- Consultant selection: 4 months
- Detailed design & bidding support: 12 months
- Contractor selection: 4 months
- Construction and construction supervision: 48 months (including 6 months of commissioning & training)
- O&M support after construction completion: 24 months

Table 1-41 Project Implementation Period

Note) Household connection will be constructed sequentially by GOB according to the construction of sanitary sewer.

2 General Information

2.1 Natural Condition

2.1.1 Introduction

2.1.1.1 General

The Chattogram city which is located on Karnaphuli River is second largest city and number one harbor and industrial city in Bangladesh. Chittagong located about 150km southeast of Dhaka city, Capital of Bangladesh, is a social, economic and cultural center. Bangladesh located on the Ganges Delta has no suitable port inland allowing vessel to come alongside the quay. And it is only possible for vessels from the Indian Ocean to bring it alongside the quay and anchor at the dock, because of enough depth of Karnaphuli river. So many cities have been constructed in along the shores of Karnaphuli river, utilizing it as major hotspot for sailing the Indian Ocean, since B.C. Chattogram accounts for 12% of Bangladesh's GDP, including 40% of industrial output, 80% of international trade, and 50% of tax revenue.

Its population is continuously increasing by inflow from neighboring villages and by enlargement of city as well as natural increase of population, and its trend is expected to continue because of many advantages as a commercial and industrial city.

CCC (Chattogram City Corporation) is the main administrative body of local government and as the subgovernmental unit of MLG (Ministry of Local Government), it coordinates with the central government with regard to regional development. Chittagong started as a small region-centered city with a population of 25,000 in 1863 and promoted to CMC (Chattogram Municipality Corporation) in 1982 which was area the size of 4. 5sq.mile. And the current status of CMC (Chattogram Municipal Corporation) was granted in 1990 In April 2018, the Cabinet Division of the Bangladesh Government decided to change the city's name to Chattogram, based on its Bengali spelling and pronunciation.

2.1.1.2 Geography

Chattogram about 150km southeast of Dhaka city, it lies at 22°20′06″N 91°49′57″E. Chattogram Hill Track is located at Bandarban, Rangamati, Khagrachari in east, Noakhali and Bengal Sea in west, Cox's Bazar in south, Feni and Tripura of India in north.

The Karnaphuli River runs along the southern banks of the city, including its central business district. The river enters the Bay of Bengal in an estuary located 12 kilometers west of downtown Chattogram.

Figure 2-1 Location Map of Chattogram

2.1.1.3 Administrative Division

Bangladesh's administrative district consists of Division, District, Upazila/Thana, Union, Ward, Mauza, Mahallah and Village. Before to 2015, it consisted of seven divisions, but the Maiman Singh Division was separated from the Dhaka Division. And Thana and Ward correspond to 'Dong' or 'Gu' of Korea. There is an administration center which is called City Corporation in Division and Paurashavain in Upazila/Zila. The number and area of administrative districts for each division are as follows. The Chattogram Division, which includes the site of this project, is divided into a total of 11 Districts, 103 Upazila, and 949 Unions, with a total area of 33,908 km².

Table 2-1 Bangladesh Administrative Divisions

Division	Established Year	Districts	Upazilas	Union	Area (km²)
Barishal	1993	6	42	333	13,225.2
Chattogram	1829	11	103	949	33,908.6
Dhaka	1829	13	88	1,248	20,593.7
Khulna	1960	10	59	270	22,284.2
Maiman Singh	2015	4	35	350	10,584.1
Rajshahi	1829	8	67	558	18,153.1
Rangpur	2010	8	58	536	16,185.0
Sylhet	1996	4	40	334	12,635.0
Total		64	492	4,578	147,569.1

^{*}Source: Statistical Yearbook Bangladesh (2021, BBS)

2.1.2 Topography & Geography

2.1.2.1 Topography

Chattogram area lies along the western margin of tectonically active Chattogram – Tripura folded belt. On the basis of landforms, its genesis, evolution and morpho dynamics, Chattogram City can be divided into three broad distinct geomorphological divisions: (1) hilly area, (2) fluvio-tidal plain and (3) tidal plain.

The elevation of the hills ranges from 10m to 300m. The relief varies between very steeply dissected, linear hill ranges and gently rolling, non-linear landforms in different areas. The low range hills occupy the synclines between the high hill ranges and the tops of some lower anticlines. Most areas are strongly dissected, with short, steep slopes, but some low hills have rolling to nearly level relief.

2.1.2.2 Geography

Chattogram Hill Track is located at near to Bengal Sea in west, Sangu River in south and Rangamati hilly area in a way to the east. And Karnaphuli River located at Chattogram plain and originated in India and East hill area, traverses the east to west of Chattogram City Corporation. As Chattogram has developed as international exporting port since the Middle Ages, the river became driving force of development, on the other hand, the river acted as a barrier of transportation, the development of the left side of river was hindered. But in recent, as the modern bridges have been constructed, it is also expected to develop at left side of river.

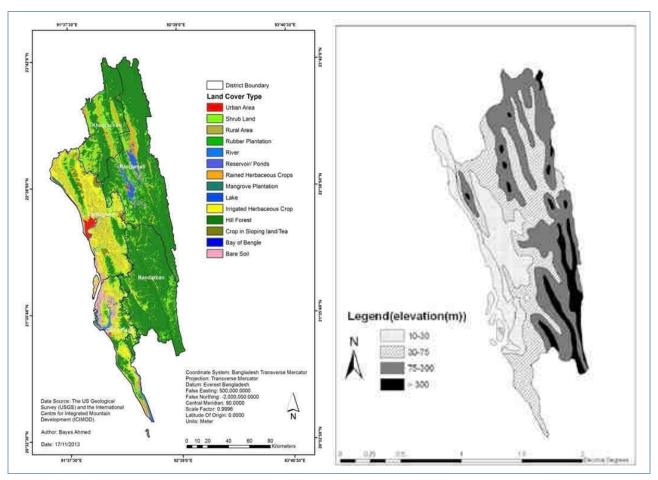


Figure 2-2 Topography and Elevation map

2.1.2.3 Geology

The hilly area is based on solid rock, mainly made of denatured or cement hardened material, and non-hardened sediments such as soil, sand, gravel and is mainly composed of alternating layers of sandstone, siltstone and shale.

The surface geology was formed by the Miocene and Pliocene centuries on mudstone formed in the Miocene. The hill track continues along the boundary between the alluvial plains and the sloping hill area to the east forming a steep anticlinal structure and leading to the Bengal Sea. On the other hand, the alluvial layer, which is a flat land was also formed by alternately stacking mud and sand layers with a thickness of about 30m and is composed of Dihing, Dupi Tila, Tipam and Boka Bil. The stratigraphic continuity and geologic characteristics of each formation are as follows.

Table 2-2 Stratigraphic Succession of Chattogram City

Table 2-2		•	n of Chattogram City	
Na	me	Age	Rock Type	Geotechnical Characters
Dir	ning	Pliocene	 Reddish brown to brick red, massive, highly ferruginous, weathered sandy to clayey silt, clay and pebbly sandstone at places, oxidized iron incrustation. On top weathered residual soils. 	 Very soft(30-10kg/cm²) to soft(100- 30kg/cm²) in hardness, low-to-medium relative strength, uniaxial compressive strength of 1-2kg/cm².
Dup	i Tila	Mid-Pliocene	Sandstone and alternation of silty sand and silty shale. Sandstone massive and medium to fine grained, silty sand beds are gray to yellowish brown, thickly laminated to bedded. Silty shale is light gray to gray, very thinly laminated, fissile. Presence of iron incrustation.	Longitudinal joints are present dipping almost parallel to the bedding, spacing varies from closed to 1.5cm, filled with ferruginous band with coarse sand. Soft(100-30kg/cm²) in hardness. Low- to-medium relative strength.
	Upper		Sandstone, siltstone and occasional shale, Sandstone cross-bedded and local unconformity at the base	Soft in hardness (100–30 kg/cm²), moderately weathered, faulted, conjugate (planar) joints are present with vertical and dipping orientation, spacing <1 cm, medium relative strength, uniaxial compressive strength >550 kg/cm²
Tipam	Middle	Mid Miocene	Silty shale and shale, bedded, shale relatively hard, at places calcareous.	• Moderate (250–100 kg/cm²) to hard (700–250 kg/cm²) in hardness, faulted, laminated, medium to high relative strength, uniaxial compressive strength varies from 550 to 1100 kg/cm².
	Lower		Massive sandstone, yellowish brown to brown, medium to coarse grained, loose to dense, cross-bedded	• Moderate (250–100 kg/cm²), at places hard (700–250 kg/cm²) in hardness, slightly to highly weathered, faulted, planar and conjugate joints are seen with vertical and dipping orientation, spacing <1 cm, ferruginous and argillaceous filling, medium to low relative strength, uniaxial compressive strength varies from 275 to 750 kg/cm².
Boka Bil		Early Miocene	Silty shale, siltstone, sandstone and alternation of sand and siltstone. Cross bedding, cross lamination, ripple marks and load casts are present.	Moderate (250–100 kg/cm²) to hard (700–250 kg/cm²) in hardness, fresh, faulted, planar diagonal to conjugate joints present, closed spacing, filled with mainly parent material, medium to high relative strength, uniaxial compressive strength varies from 250 to 700 kg/cm².

^{*}Source: Landslide Susceptibility of Chittagong City (2018)

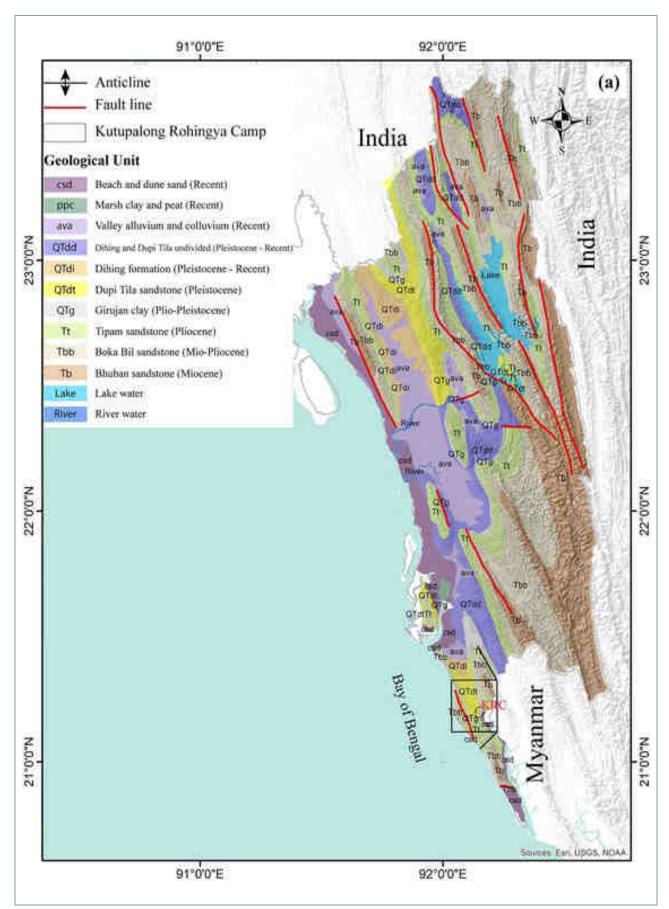


Figure 2-3 Geological map

2.1.3 Climate

Chattogram is a monsoon climate region located near the equator. The monsoon climate are high temperatures, humidity and heavy rain. This area is divided into a high-temperature dry period from March to May, a high-temperature period from June to October, and a dry and cool period from November to February.

As a result of temperature analysis over the last 30 years, the average temperature is 25.3°C, the highest temperature is 30.8°C, and the lowest temperature is 24.1°C, and the average temperature difference throughout the year is 6.7° C.

The average annual rainfall is 231.4mm. In terms of monthly average rainfall, 80% of the average annual rainfall is concentrated over five months. The highest monthly precipitation is 622mm in July and the lowest is 5.0mm in January.

Table 2-3 Monthly Average Temperature & Rainfall (1991~2021)

Category	Unit	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Ave
Max.		24.1	26.9	29.7	30.8	30.5	29.3	28.6	28.9	29.1	29.2	27.5	24.9	28.3
Min.	°C	15.7	18.1	22.0	25.2	26.0	26.0	25.6	25.6	25.5	24.5	20.9	17.4	22.7
Avg.		19.8	22.5	25.8	27.9	28.1	27.4	26.9	27.0	27.1	26.6	24.0	21.0	25.3
Rainfall	mm	5	17	57	101	304	598	622	449	350	209	50	15	231.4
Humidity	%	72	68	71	79	83	87	88	88	87	85	79	76	80.3

^{*}Source: Climate-Data.org

Figure 2-4 Monthly Average Temperature & Rainfall

2.1.4 River System

Chattogram division consists of Chattogram hill track, rivers traversing Hill track and alluvial plain formed by these rivers. As main channel, there are Feni river in North, Karnaphuli River in middle and Sangu River in south. And natural channel to flow water to sea directly and artificial channel are also developed.

Feni originates in the eastern hills of Tripura and enters Bangladesh at Belchhari of Matiranga upazila of Khagrachhari district, it flows through Ramgarh (Khagrachhari), Fatikchhari (Chattogram) and then flows along the border of Chattogram (Mirsharai upazila) and Feni (Chhagalnaiya, Feni, Sonagazi upazilas) districts and discharges into the Bay of Bengal near Sonagazia. The length of the river is 108km.

The Karnapuli, The principal river of the region. It originates in the Lushai Hills of Mizoram (India), flows through Rangamati and the port city of Chittagong and discharges into the Bay of Bengal near Patenga. The length of the river is 270km.

The Kaptai Dam is located upstream, Rainkhiang, Sublong, Thega, Kasalong, Ichamati and Halda are its main tributaries.

Sangu river originates in the Arakan Hills of Myanmar and enters Bangladesh near Remarki (Thanchi upazila of Bandarban district). It flows north through Thanchi Rowangchhari and Banshkhali upazilas of Bandarban district. Then it flows west through Satkania and Banshkhali upazilas of Chattogram district to meet the Bay of Bengal near Khankhanabad (Chattogram). The length of the river is 270km. Its main tributaries are the Chand Khali Nadi and Dolukhal, which connect with the Karnaphuli River through the Chand Khali River.

Table 2-4 Chattogram Division River System

Main	Tributary	,	1 (1				
		S	tart	En	Length (km)	Remarks	
Stream		Country	Source	Region	Inflow	(KIII)	
Feni		India	Tripura	Sonagazi	Bay of Bengal	108	
reni	Muhuri	India	Tripura	Parshuram	Feni	59	
		India	Lushai Hill	Patenga	Bay of Bengal	270	
	Halda	Bangladesh	Batnatali Hill	Madhunaghat	Karnaphuli	88	
Karnaphuli	Rainkhiang	Bangladesh	Rangamati	Belaichhari	Kaptai Lake	77	
	Kasalong	Bangladesh	Baghaichhari	Kedarmara	Karnaphuli	65	
	Ichamati	Bangladesh	Kawkhali	Rangunia	Karnaphuli	30	
		Myanmar	Arakan Hill	Khankhanabad	Bay of Bengal	270	
Sangu	Chand Khail Nadi	Bangladesh	Patiya	Satkania	Sangu	11	
	Dolukhal	-	-	Satkania	Sangu	-	

^{*}Source: Banglapedia.org

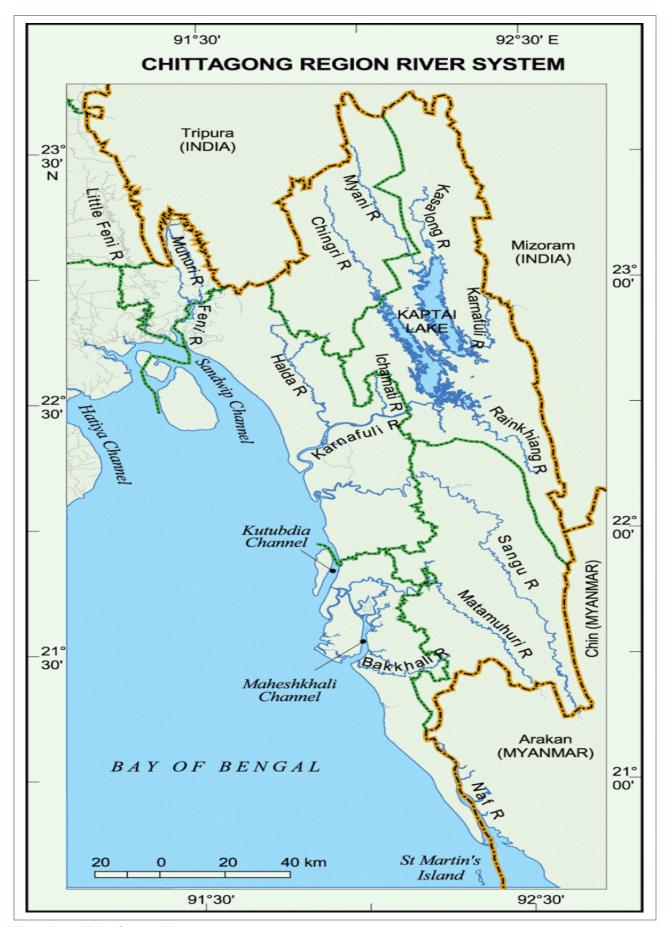


Figure 2-5 Rvier System Map

2.1.5 Water Resource & Land Use

2.1.5.1 Water Resource

Kaptai Lak is the largest lake in Bangladesh. It is located in the Kaptai Upazila. The lake was created as a result of building the Kaptai Dam on the Karnaphuli River, as part of the Karnaphuli Hydro-electric project. Kaptai Lake's average depth is 30m and maximum depth is 150m.

Kaptai Dam is on the Karnaphuli River at Kaptai, 65 kilometers upstream from Chattogram. The Kaptai dam, of which the catchment area is about 680km². As part of water catchment area is positioned in India, the amount of water flowing to the dam is reduced if an insufficient amount of water discharged from dam in India. Main source of water of the Karnaphuli river is from Kaptai dam. And when water discharge is ceased due to drought, salinity intrusion at high tide makes serious problems to water supply.

Figure 2-6 Kaptai Lake & Dam

2.1.5.2 Land Use

2.1.5.2.1 Introduction

Current landsite use, as presented in CDA's detailed area plan, can be summarized as follows. Most of the land developments in the urban area were done in an unplanned manner, and in the outskirts, only villages that look like a strap along the major traffic roads or a few main areas were developed, which has caused serious traffic problems.

The planned urban area developed by government, which was supposed to fit a specific land use purpose, is currently not fulfilling the original purpose due to the absence of government policy or regulation. Population density is increasing in the downtown city, but successively developed area shows varying density.

2.1.5.2.2 Land Use

Among the 69,080ha area covered, 16,741ha is restricted for residential, commercial, or industrial purposes. The detailed area plan subdivided this into 12 Development Processing Zones (DPZ), of which DPZ 1~6 is downtown and the rest are located in outskirts. Among the restricted area of 16,741ha, residential areas make up 58%, roads and public facilities 14%, factory space takes up 14%, and 4% are for the commercial use.

Table 2-5 Land Use Status

Table 2-5 Lai	iu USE Si							_				
Category	DPZ 01	DPZ 02	DPZ 03	DPZ 04	DPZ 05	DPZ 06	DPZ 07	DPZ 08	DPZ 09	DPZ 10	DPZ 11	DPZ 12
Residential	1,345	1,346	339	411	662	521	168	720	875	1,149	1,028	1,168
Commercial	21	21	136	114	57	29	21	21	30	47	146	68
Educational	22	22	19	19	23	7	3	13	40	62	6	15
Industrial*1	536	739	13	219	139	64	209	66	14	21	27	324
Miscellaneous	17	17	10	161	20	28	13	30	13	19	20	34
Compound	2	2	102	274	32	8	2	5	10	15	1	3
Office	0	0	5	18	7	0	0	3	2	2	0	0
Public	15	13	17	60	19	6	39	33	14	33	49	13
Public Utilities	6	6	20	12	25	0	2	4	2	2	13	6
Roads & Transportation facilities	294	292	144	194	176	145	140	153	77	118	274	388
Total Public	2,257	2,459	806	1,481	1,161	807	593	1,047	1,076	1,470	1,564	2,019
Utilities	44%	60%	60%	45%	49%	21%	6%	10%	38%	33%	25%	14%
Others	2,884	1,622	540	1,835	1,232	3,079	9,745	9,712	1,789	2,975	4,702	12,225
Total area	5,141	4,081	1,346	3,316	2,393	3,886	10,338	10,759	2,865	4,445	6,266	14,244

^{*}Source: DAP for CMMP

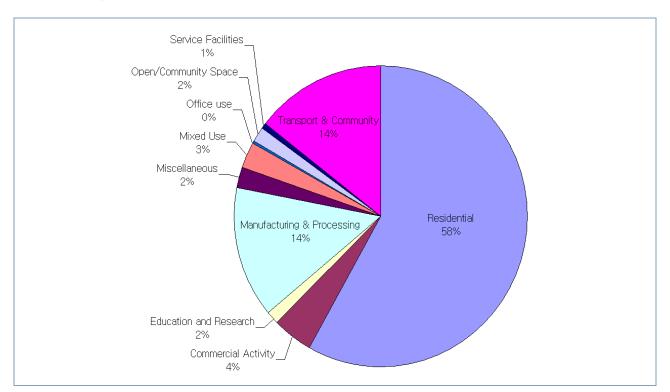


Figure 2-7 Land Use diagram

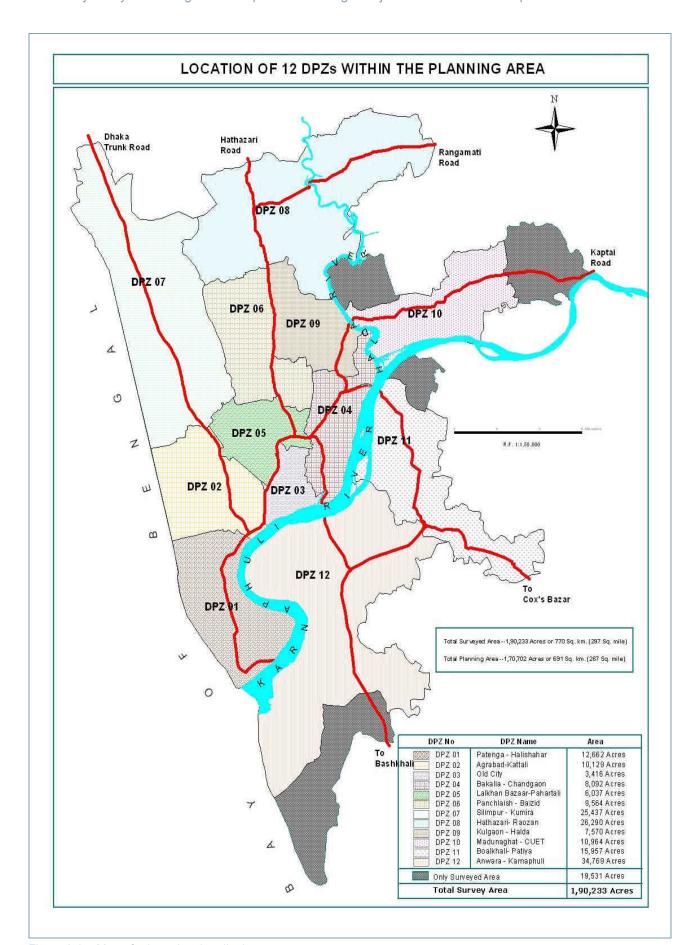


Figure 2-8 Map of urban planning district

2.1.5.2.3 Residential Area

Except for a few planned zones, most of the residential areas were developed in extremely disorderly manner, partially because development was done privately. According to the structure plan of CDA, 85% of development was performed privately, 15% was performed by the government which 7.6% of that was for government employees and the remaining 7.4% was supplied to upper and middle-class residents (SAPROF report, 2005). The government institution in charge of its distribution is the CDA and Housing Settlement Department. Residential complexes developed by the government are scattered around in Agrabad, Chandgaon, Halishohar, and Salimpur, located on the left side of the Karnaphuli river.

Recently, the residential complexes have been under construction in Kaiball and Aydham for the poor, and the government has established residence distribution policies targeting specific classes.

Table 2-6 Residential Status

No.	Institution in charge	Name	Area (Acre(ha))	Number of blocks	Construction period
1	CDA	Katalganj	6 (2.4)	51	1960 ~ 61
2	CDA	Agrabad	33 (13.4)	774	1962 ~ 63
3	CDA	Chandgaon	41 (16.6)	606	1962 ~ 63 1973 ~ 74
4	CDA	Chandgaon (2 nd)	5.79 (2.3)	83	1978 ~ 80
5	CDA	Fauzderhat	13.62 (5.5)	164	1962 ~ 63 1980 ~ 81
6	CDA	Chandrima	11.97 (4.8)	183	1999 ~ 00
7	CDA	Halishahar	14.80 (5.9)	22	1963 ~ 64
8	CDA	Sholoshar	10.25 (4.1)	98	1960 ~ 61
9	CDA	Selimpur	98.93 (40.0)	1,029	1985 ~ 90
10	CDA	Karnaphuli	51.69 (20.9)	516	1991 ~ 96
11	CDA	Kalpalok (I, II)	129.42 (52.4)	1,700	2005 ~ 06
12	CDA	Annayana	62 (25.1)	1,521	2007
13	NHA	Shershai	-	330	-
14	NHA	Feroz Shah	-	944	-
15	NHA	Halishahar	-	3,419	-
16	NHA	Kaiballayandham	41.3 (16.7)	4,275	1988 ~ 97
17	CCC	Sughandah	-	194	-
18	PWD	Panchalish	-	139	-
19	Nasirabad HS	Nasirabad HC	42.11 (17.0)	165	-
20	Nasirabad HS	Kulsi HC	-	177	-

*Source: DAP for CMMP

2.1.5.2.4 Commercial & Industrial Area

Chattogram city had originated from Chattogram port, and the main commercial and industrial zone are developed around the port. As the number of people using Chittagong port, mostly the Turkish and the Dutch, had increased since the middle age, trading and business grew with port, factory blocks had started to form in modern ages, as the export processing industries prospered through use of cheap labor. Some of factory areas are collectively developed in the form of industrial complexes, but some are individually scattered inside the city.

Collective industrial zones in the form of industrial complexes are operating in six areas of Chattogram city, and the distribution of industrial complexes is as follows. The Patenga industrial complex used to be an area where steel mills were operated, but in recent years it has become impossible to operate due to the aging of the factory facilities. Therefore, Karnaphuli export complex was created through redevelopment.

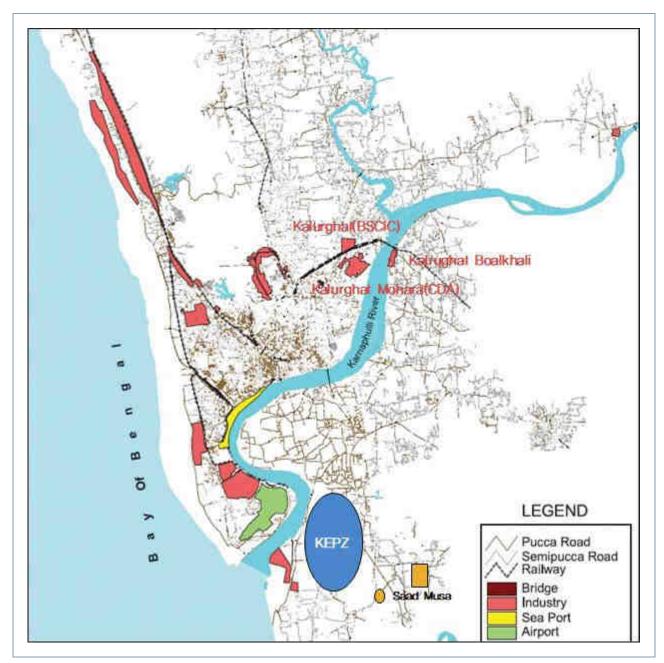


Figure 2-9 Status of industrial zone in Chattogram

2.2 Socio-Economic Conditions

2.2.1 Administrative District & Population

2.2.1.1 Administrative District

Bangladesh's administrative district consists of Zila, Upazila/Thana, Union/Ward, Mauza and Village from upper division, and city corporation in central government of urban area, Paurashava/Municipal Area (PSA) at local major area and other urban area of center of upazila if no existing Paurashava. In accordance with Statistical Yearbook Bangladesh 2021, there are 14 Upazila, 12 Thana, 11 Payrashava, 197 Union and 131 Ward in Chattogram zila.

Table 2-7 Administrative District of Chattogram

District	Area (km²)	Composition (%)	Upazila / Thana	Union	Ward	Mauza / Maulah	Village	Paurashava
Bandarban	4,479.0	13.2	7	30	18	201	1,554	2
Brahmanbaria	1,881.2	5.5	9	100	39	1,033	1,324	4
Chandpur	1,645.3	4.9	8	87	72	1,240	1,230	7
Chattogram	5,282.9	15.6	26	197	131	1,378	1,288	11
Comilla	3,146.3	9.3	16	181	99	2,770	3,532	10
Cox's Bazar	2,491.9	7.3	8	71	39	346	989	4
Feni	990.4	2.9	6	43	54	597	553	5
Khagrachhari	2,749.2	8.1	8	38	27	276	1,702	3
Lakshmipur	1,440.4	4.2	5	58	39	525	547	4
Noakhali	3,685.9	10.9	9	91	72	1,035	967	8
Rangamati	6,116.1	18.0	10	49	18	252	1,555	2
Total	33,908.6	100	112	945	608	9,653	15,241	60

^{*}Source: Statistical Yearbook Bangladesh (2021, BBS)

2.2.1.2 Chattogram City Corporation (CCC)

Chattogram City Corporation (CCC) is the main administrative body of the local government, and as the sub-governmental unit of the Ministry of Local Government, it coordinates with the central government regarding regional development. Chattogram started as a small region-centered city with a population of 25,000 in 1863. Its status was promoted to Chattogram Municipality in 1864 as its size grew to 4.5sq. mile, and was again elevated to the Chattogram Municipal Corporation (CMC) in 1982. The current status of Chattogram City Corporation (CCC) was granted in 1990. The CCC area consists of 11 Thana, 47 Ward.

Table 2-8 Ward & Upazila of CCC

No.	Ward Ward	Area (km²)	No.	Ward	Area (km²)
1	South Pahartali	23.1	26	North Halishahar	5.9
2	Jalalabad	14.8	27	South Agrabad	1.4
3	Panchlaish	5.6	28	Pathantooly	1.4
4	Chandgaon	10.7	29	West Madarbari	0.8
5	Mohara	10.2	30	East Madarbari	1.1
6	East Sholashahar	2.4	31	Alkaran	0.8
7	West Sholashahar	3.2	32	Andarkilla	0.8
8	Sulakbahar	5.3	33	Firingee Bazaar	0.6
9	North Pahartali	6.4	34	Patharghata	0.9
10	North Kattali	4.9	35	Boxirhat	2.6
11	South Kattali	3.0	36	Gosaildenga	2.0
12	Saraipara	2.4	37	North Middle Halishahar	3.3
13	Pahartali	3.3	38	South Middle Halishahar	4.8
14	Lalkhan Bazaar	1.2	39	South Halishahar	6.6
15	Bagmoniram	2.1	40	North Patenga	10.5
16	Chawk Bazar	2.0	41	South Patenga	14.3
17	West Bakalia	1.9		Total	172.9
18	East Bakalia	5.1		Outside Upazila	
19	South Bakalia	0.8		Sitakunda Upazila	483.97
20	Dewan Bazar	0.4		Hathazari Upazila	246.32
21	Jamalkhan	0.8		Rangunia Upazila	361.54
22	Enayet Bazar	0.8	Boalkali Upazila		126.46
23	North Pathantooly	0.6	Patiya Upazila		211.85
24	North Agrabad	2.6	Anowara Upazila		164.10
25	Rampur	1.5		Raozan Upazila	246.60

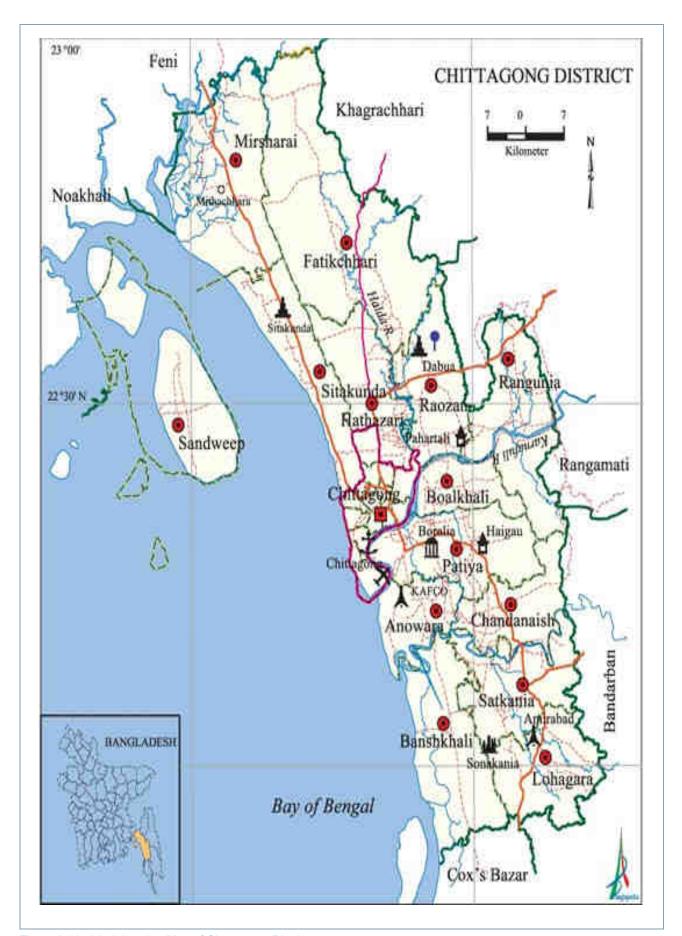


Figure 2-10 Administrative Map of Chattogram District

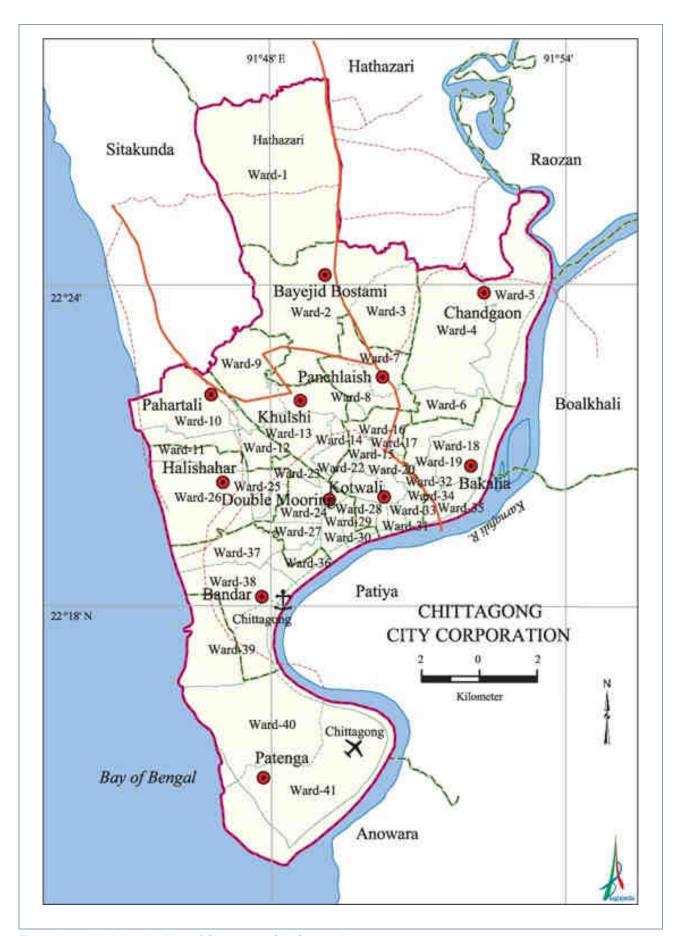


Figure 2-11 Administrative Map of Chattogram City Corporation

2.2.1.3 Current Population

2.2.1.3.1 Population Trend

In 2022, the population of Chattogram Division is 33,202,326. The population of the Chattogram District is 9,169,464 accounting for 27.62% of the total population of the Division. Intensive population increase in Chattogram zila in last 20 years is caused by a population explosion in Thana area, even though growth rate of population is decreasing, and population in rural area is constantly increasing.

Table 2-9 Population Trend of Chattogram Division

			Annual Average Growth (%)			
District	2001	2011	2022	During 10 years	During 20 years	Note
Bandarban	298,120	388,335	481,109	27.08	23.89	
Brahmanbaria	2,398,254	2,840,498	3,306,559	17.42	16.41	
Chandpur	2,271,229	2,416,018	2,635,748	7.73	9.09	
Chattogram	6,612,140	7,616,352	9,169,464	17.79	20.39	
Comilla	4,595,557	5,387,288	6,212,216	16.27	15.31	
Cox's Bazar	1,773,709	2,289,990	2,823,265	26.20	23.29	
Feni	1,240,384	1,437,371	1,648,896	15.30	14.72	
Khagrachhari	525,664	613,917	714,119	16.56	16.23	
Lakshmipur	1,489,901	1,729,188	1,938,111	14.07	12.08	
Noakhali	2,577,244	3,108,083	3,625,252	18.62	16.64	
Rangamati	508,182	595,979	647,587	12.97	8.66	
Total	24,290,384	28,423,019	33,202,326	16.91	16.81	

^{*}Source: Statistical Yearbook Bangladesh (2021, BBS), Population & Housing Census (2022, BBS)

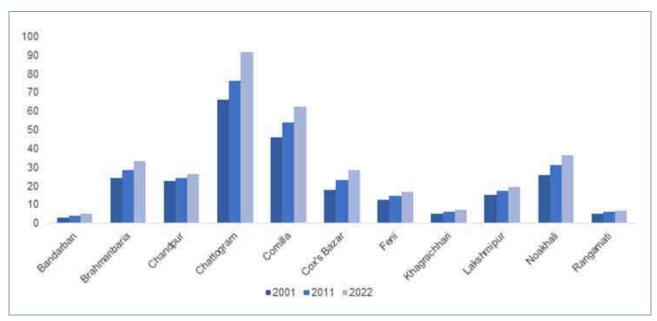


Figure 2-12 Chattogram Division Population trend

2.2.1.3.2 Household Trend

The household in Chattogram Division increased from 4,472,302 (2001) to 7,528,333 (2022), and Chattogram Zila accounts for 28.48% of the total households. As the population increases, the number of members per household gradually decreases, resulting in a rapid increase in the number of households.

Table 2-10 Household Trend

	20	01	20	11	2022	
Zila	Household	Size (pers/house)	Household	Size (pers/house)	Household	Size (pers/house)
Bandarban	60,141	5.0	80,102	4.9	106,167	4.5
Brahmanbaria	429,390	5.6	538,937	5.3	712,613	4.6
Chandpur	433,768	5.2	506,521	4.8	635,458	4.2
Chattogram	1,240,537	5.3	1,532,014	5.0	2,143,958	4.3
Comilla	828,168	5.5	1,053,572	5.1	1,407,396	4.4
Cox's Bazar	296,109	6.0	415,954	5.5	587,127	4.8
Feni	223,049	5.6	277,665	5.2	377,189	4.4
Khagrachhari	109,190	4.8	133,792	5.6	169,526	4.2
Lakshmipur	288,736	5.2	365,339	5.7	459,381	4.2
Noakhali	460,394	5.6	593,918	5.2	776,034	4.7
Rangamati	102,820	4.9	128,496	4.6	153,484	4.2
Total / Average	4,472,302	5.3	5,626,310	5.2	7,528,333	4.4

2.2.1.3.3 Birth & Death Rate

According to Statistical Yearbook of Bangladesh (2021, BBS), the birth rate and death rate per 1,000 people by residential area are as follows. In 2020, the crude birth rate was 18.1 in the country, 15.3 in the urban area, and 20.4 in the rural area. Population change over the past 20 years has shown that the birth rate is higher than the death rate regardless of region, and the population has continued to grow.

Table 2-11 Population Trend of Bangladesh

Vacu	Cr	ude Birth Ra	te	Crı	ude Death Ra	ate	Population Trend		
Year	Country	Urban	Rural	Country	Urban	Rural	Country	Urban	Rural
2001	18.9	13.6	20.7	4.8	4.3	5.2	14.1	9.3	15.5
2002	20.1	16.6	21.0	5.1	3.8	5.4	15.0	12.8	15.6
2003	20.9	17.9	21.7	5.9	4.7	6.2	15.0	13.2	15.5
2004	20.8	17.8	21.6	5.8	4.4	6.1	15.0	13.4	15.5
2005	20.7	17.8	21.7	5.8	4.9	6.1	14.9	12.9	15.6
2006	20.6	17.5	21.7	5.6	4.4	6.0	15.0	13.1	15.7
2007	20.9	17.4	22.1	6.2	5.1	6.6	14.7	12.3	15.5
2008	20.5	17.2	22.4	6.0	5.1	6.5	14.5	12.1	15.9
2009	19.4	16.8	20.4	5.8	4.7	6.1	13.6	12.1	14.3
2010	19.2	17.1	20.1	5.6	4.9	5.9	13.6	12.2	14.2
2011	19.2	17.4	20.2	5.5	4.8	5.8	13.7	12.6	14.4
2012	18.9	17.1	20.0	5.3	4.6	5.7	13.6	12.5	14.3
2013	19.0	18.2	19.3	5.3	4.6	5.6	13.7	13.6	13.7
2014	18.9	17.2	19.4	5.2	4.1	5.6	13.7	13.1	13.8
2015	18.8	16.5	20.3	5.1	4.6	5.5	13.7	11.9	14.8
2016	18.7	16.1	20.9	5.1	4.2	5.7	13.6	11.9	15.2
2017	18.5	16.1	20.4	5.1	4.2	5.7	13.4	11.9	14.7
2018	18.3	16.1	20.1	5.0	4.4	5.4	13.3	11.7	14.7
2019	18.1	15.9	20.0	4.9	4.4	5.4	13.2	11.5	14.6
2020	18.1	15.3	20.4	5.1	4.9	5.2	13.0	10.4	15.2

*Source: Statistical Yearbook Bangladesh (2021, BBS)

2.2.2 Economic Condition

2.2.2.1 Economic Indicator

Bangladesh has achieved steady economic growth of more than 4% every year since 2000 until 2020, when COVID-19 broke out. Although the manufacturing base other than the sewing industry is weak, it is one of the world's fastest growing middle-class countries based on the government's active development policy and is expected to leave the poorest country in 2026.

Bangladesh Bank set a target for consumer price inflation in 2022 at 5.3%, but the prolonged Ukraine war from Russia in February 2022 caused a shortage of wheat and cooking oil, which accounted for a large portion of the two countries' supply, causing international prices to soar. Wheat is the second most consumed grain by Bangladeshi people, and overall inflation has been driven by rising prices of basic necessities.

Table 2-12 Economic Indicator of Bangladesh

Category	Unit	2018	2019	2020	2021	2022
Economic growth rate	%	7.9	8.2	3.5	5.0	6.4
Consumer price inflation	%	5.7	5.6	5.7	5.5	6.0
Fiscal balance / GDP	%	-4.8	-6.3	-5.6	-4.2	-6.2
Current account balance	US\$ million	-7,095	-2,949	1,193	-15,563	-17,487
Current account balance / GDP	%	-2.6	-1.0	0.4	-4.4	-4.4
Goods balance	US\$ million	-17,284	-15,929	-16,394	-32,522	-33,448
Export	US\$ million	38,682	38,747	32,456	41,908	46,937
Import	US\$ million	55,966	54,676	48,850	74,431	80,385
Foreign exchange reserve	US\$ million	29,973	30,648	41,036	42,851	42,169
Foreign debt balance	US\$ million	60,356	63,160	73,060	93,130	95,489
Foreign debt balance / GDP	%	22.0	20.9	22.6	26.1	24.1
Exchange Rate	(BDT/USD)	83.47	84.45	84.87	85.08	105

^{*}Source: IMF

Table 2-13 Inflation Rate (%)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg.
2018	5.88	5.72	5.68	5.83	5.82	5.78	5.78	5.74	5.68	5.63	5.58	5.55	5.72
2019	5.51	5.49	5.48	5.47	5.56	5.52	5.62	5.49	5.54	5.47	6.05	5.75	5.58
2020	5.57	5.46	5.48	5.96	5.35	6.05	5.53	5.68	5.97	6.44	5.52	5.29	5.69
2021	5.02	5.32	5.47	5.56	5.26	5.64	5.36	5.54	5.59	5.70	5.98	6.05	5.54
2022	5.86	6.17	6.22	6.29	7.42	7.56	7.48	9.52	9.10	8.91	8.85	8.71	7.67

*Source: TRADING ECONOMICS

2.2.2.2 Economically Active Population

The economically active population of Bangladesh in 2010 was 56,607 thousands. This corresponds to 59.2% of the 95,585,000 people over 15 aged who can be economically active.

Table 2-14 Economically active population by division (1000 people)

Division	Over 15 aged	Economically Active Population	Economically Inactive Population	Participation Rate (%)
Brisal	5,964	3,347	2,617	56.1
Chattogram	17,394	9,470	7,924	54.4
Sylhet	5,612	3,326	2,286	59.3
Dhaka	30,451	18,143	12,308	59.6
Khulna	11,537	6,868	4,669	59.5
Rajshahi	13,565	8,243	5,322	60.8
Rangpur	11,062	7,210	3,852	65.2
Total	95,585	56,607	38,978	59.2

^{*}Source: Statistical Yearbook of Bangladesh (2011, BBS)

The economically active population by district in the Chattogram Division is as follows. The economically active population of Chattogram District was 2,759 thousands. This corresponds to 56.2% of the 4,910,000 people over 15 aged who can be economically active.

Table 2-15 Economically active population of Chattogram Division (1,000 people)

District	Over 15 aged	Economically Active Population	Economically Inactive Population	Participation Rate (%)
Bandarban	205	163	42	79.5
Brahmanbaria	1,418	721	697	50.8
Chandpur	1,710	808	902	47.3
Chattogram	4,910	2,759	2,151	56.2
Comilla	3,107	1,780	1,327	57.3
Cox's Bazar	1,144	607	537	53.1
Feni	933	498	435	53.4
Khagrachhari	602	410	192	68.1
Lakshmipur	1,205	615	590	51.0
Noakhali	1,707	861	846	50.4
Rangamati	453	248	205	54.7
Total	17,394	9,470	7,924	54.4

^{*}Source: Statistical Yearbook of Bangladesh (2011, BBS)

2.2.3 Industry Condition

2.2.3.1 General

Bangladesh supports a free market economy. The private sector has made rapid progress, led by many large companies. This high economic growth can be attributed to the active will and efforts of both the government and the private sector. The main industries are textiles, pharmaceuticals, shipbuilding, steel, electronics, energy, construction materials, chemicals, ceramics, food processing, and leather products. Since the 2010s, the proportion of agriculture, which accounted for the majority of the national economy, has been reduced to 10%, and the share of manufacturing and service industries was expanded.

Industry-related regulations have been simplified to attract the investment of private capital, and the textile industry is being modernized to encourage the apparel and sewing industry. The highest priority industry sectors include sewing, small textiles, and labour-intensive manufacturing industries, which are being used to promote exports and create more jobs for the younger population. The government is refraining from nationalizing manufacturing industry, commerce and financial businesses that are privately owned.

To encourage foreign investment, incentives such as Duty-Free Day for a certain period are designated, and low, or even no tariffs on raw materials import and overseas money transfer.

2.2.3.2 Industry Structure

The number of establishments and employees by industry in urban and rural areas of Chattogram District in 2013 are as follows. Total 380,550 establishment, 191,893 establishments are located in urban areas and the remaining 188,657 are located in rural areas. As for the number of workers, it was analysed that 1,392,149 (70.71%) of the total 1,968,862 worked in urban areas and 576,713 (29.29%) worked in rural areas. Both establishments and employees are concentrated in urban areas.

As a result of the classification, manufacturing, wholesale/retail, and service industries, which are the basis of the local economy, are the main sectors.

Table 2-16 Number of Establishments & Employees by Category

Category		Establishments	;		Employees		
Category	Total	Urban	Rural	Total	Urban	Rural	
Mining and Quarrying	964	46	918	1,735	520	1,215	
Manufacturing	58,620	15,716	42,904	965,165	814,874	150,291	
Electricity, Gas, Steam and Air Conditioning Supply	181	89	92	2,066	1,085	981	
Water Supply, Sewerage, Waste Management and Remediation Activities	146	106	40	1,510	1,386	124	
Construction	207	173	34	2,218	2,127	91	
Wholesale and Retail Trade, Repair Trade, Repair of Motor Vehicles and Motorcycles	196,984	118,774	78,210	570,273	336,447	233,826	
Transportation and Storage	14,999	5,127	9,872	28,558	15,423	13,135	
Accommodation and Food Service Activities	35,744	17,740	18,004	86,200	46,237	39,963	
Information and Communication	1,278	981	297	6,727	5,281	1,446	

Cotogory		Establishments	;		Employees		
Category	Total	Urban	Rural	Total	Urban	Rural	
Financial and Insurance Activities	2,458	1,604	854	32,015	21,629	10,386	
Real Estate Activities	380	304	76	2,540	2,352	188	
Professional, Scientific and Technical Activities	2,988	2,333	655	13,094	10,401	2,693	
Administrative and Support Service Activities	3,647	2,076	1,571	12,043	6,878	5,165	
Public Administration and Defense, Compulsory Social Security	1,022	676	346	28,867	26,039	2,828	
Education	8,557	3,123	5,434	65,593	28,464	37,129	
Human Health and Social Work Activities	3,736	1,932	1,804	19,591	12,504	7,087	
Art, Entertainment and Recreation	644	391	253	2,658	1,636	1,022	
Other Service Activities	47,995	20,702	27,293	128,009	58,866	69,143	
Total	380,550	191,893	188,657	1,968,862	1,392,149	576,713	

^{*}Source: Economic Census District Report: Chittagong (2013, BBS)

The number of establishments and employees in the Chattogram City Corporation area is as follows. Compared to the District, establishments accounted for 49.99% and employees accounted for 64.72%.

Table 2-17 Number of Establishments & Employees in CCC

Thana	Establishments	Employees
Bayejid Bostami	10,729	110,890
Bakali	9,368	31,390
Chandgaon	12,521	91,786
Chittagong Port	13,534	532,008
Double Mooring	24,248	102,559
Halishahar	12,587	49,446
Kotwali	34,860	149,587
Khulshi	11,276	50,653
Pahartali	8,778	66,153
Panchlaish	8,756	33,553
Patenga	9,320	56,312
Total	155,977	1,274,337

^{*}Source: Economic Census District Report: Chittagong (2013, BBS)

2.3 Relevant Plan

2.3.1 Long-Term Plan

2.3.1.1 Perspective Plan of Bangladesh 2021-2041 (PP 2041)

In March 2020, the Government of Bangladesh announced its long-term vision "Perspective Plan of Bangladesh 2021-2041 (PP2041)" as a strategy with development goals through 2041, and policies/programs to achieve them. Under PP2041, Bangladesh aims to become an Upper Middle-Income Country and eliminate extreme poverty1 by 2031, and to achieve a High-Income Country status by 2041 with poverty2 approaching extinction.

The main visions of PP2041 are (1) Bangladesh will be a developed country by 2041, with per capita income of over US\$12,500 and fully in tune with the digital world, and (2) Poverty will become a thing of the past in Sonar Bangla. The transition can be realized through a process of rapid inclusive growth leading to the elimination of poverty while increasing the productive capacity, building an innovating knowledge economy and protecting the environment, with the following 9 strategic goals.

Table 2-18 PP 2041 Core Objectives and Targets for Environmental Management

Objectives/Targets	2018 Base Year Values	FY2041 Values
Share of urban population in total population (%)	30	80
Urban households with tap water connectivity (%)	40	100
Urban households with water-sealed sanitary toilets (%)	42	100
Urban households with modern sewerage connection (%)	N/A	100
Rural households with tap water connectivity (%)	0	50
Rural households with water-sealed sanitary toilets (%)	0	50
Rural households with safe sewerage connection	0	100
Incidence of poverty (%)	24	<3
Percent of population living in slums (%) Percent of household living in slums (UN definition)	55	0
Percent of urban centres with waste water treatment facilities	N/A	100
Core environmental spending (% of GDP)	1	3.5
Spending by environment coordinating entity (% of GDP)	0.005	0.5
Application of polluter pays principle (% of cases)	0	100
Carbon tax (% of fuel prices)	0	15
Green area for Dhaka-major cities (square meter per capita)	N/A	5-12
Disaster readiness (%)	N/A	100
Urban water bodies compliance with water quality standards (%)	0	100
Air quality (annual average, µg/m3 PM 2.5)	86	10
Percent of cities flood free with proper drainage	0	100
Percent of land degraded	18	5
Area under forest cover (% of land)	15	20
Protection of Habitat and Biodiversity International Ranking	Bottom 5%	Top 30%
Environmental Performance Index International Ranking	Bottom 5%	Top 30%

2.3.1.2 Eighth Five Year Development Plan 2020-2025 (8FYP)

In December 2020, the Government of Bangladesh announced the "8th FIVE YEAR PLAN July 2020-June 2025 ("8FYP")". Based on the lessons learnt from the previous FYP, the 8FYP launches some concrete measures to achieve the main vision, strategic goals of PP2041, and Sustainable Development Goals (SDGs), and sets priority strategies & priority issues.

- Rapid recovery for COVID-19 to restore human health, confidence, employment, income and economic activities
- GDP growth acceleration, employment generation, productivity acceleration and rapid poverty reduction
- A broad-based strategy of inclusiveness with a view to empowering every citizen to participate fully and benefit from the development process and helping the poor and vulnerable with social protectionbased income transfers
- A sustainable development pathway that is resilient to disaster and climate change; entails sustainable
 use of natural resources; and successfully manages the inevitable urbanization transition
- Development and improvement of critical institutions necessary to lead the economy to Upper Middle-Income Country status
- Attaining SDG targets and coping up the impact of LDC graduation.

Table 2-19 Performance Indicators and Targets of Water Supply & Sewerage Sector

Performance Indicator	Baseline (Year)	Target(2021)	Target(2022)	Target(2023)	Target(2024)	Target(2025)
Percentage of urban population having access to safe drinking water	78 <u>.</u> 0 (2016)	82.4	86.8	91.2	95.6	100.0
Percentage of urban populationhaving access to sanitary toilet facilities	80.0 (2016)	84.0	88.0	92.0	96.0	100.0
Percentage of households withsewerage connection	5,0 (2017)	6.0	7.0	8.0	9.0	10.0
Per cent of urban centres with modern waste disposal facilities	-	2.0	4.0	6.0	8.0	10.0
Per cent of urban centres with wastewater treatment facilities	-	2.0	4.0	6.0	8.0	10.0
Percentage of urban populationhaving access to public health service	87 <u>.</u> 0 (2016)	89.6	92.2	94.8	97.4	100.0

2.3.2 Sewerage System Master Plan

CWASA (Chattogram Water Supply and Sewerage Authority) established master plans related to sewerage system in the 1st (2009) and 2nd (2017) phases, and the main contents are as follows.

2.3.2.1 Sewerage Master Plan (2009)

2.3.2.1.1 Introduction

CWASA established a master plan to improve the quality of life of Chattogram City and to alleviate environmental problems by establishing an infrastructure system for sewage collection and treatment by setting 2031 as the planned target year.

2.3.2.1.2 Planning Framework

The population, penetration rate, and influent water quality of the main treatment plant (Right·Left Side South North) are as follows.

Table 2-20 Planning Framework of Master Plan (2009)

	Catego		2007	2011	2016	2021	2026	2031
		RS STP	1,817	1,932	2,188	2,443	2,694	2,944
Popula	ation	RN STP	1,493	1,638	1,917	2,197	2,476	2,756
(1,000	cap.)	LS STP	260	280	295	310	330	350
		LN STP	180	200	215	230	250	270
		RS STP	40	64	70	76	82	88
Penetra	ation	RN STP	31	50	59	67	73	79
Rate	(%)	LS STP	-	15	28	40	50	60
		LN STP	-	10	22	33	42	50
		RS STP	54	110	175	240	357	473
Daily Ma	ximum	RN STP	33	67	118	168	270	371
(1,000r	m³/d)	LS STP	-	42	67	92	102	113
		LN STP	-	2	5	9	16	23
		RS STP	504	454	390	381	328	312
	BOD RN STP		523	479	404	403	334	317
	ВОО	LS STP	-	228	236	249	254	263
		LN STP	-	489	382	405	327	317
Influent		RS STP	903	812	698	680	586	558
Water	COD	RN STP	940	861	726	725	602	570
Quality	COD	LS STP	-	373	387	411	422	440
(mg/L)		LN STP	-	880	687	729	588	571
		RS STP	599	543	473	463	395	373
	TSS	RN STP	612	557	468	467	387	366
	100	LS STP	-	880	687	729	588	571
		LN STP	-	564	441	468	377	366

2.3.2.1.3 Expansion Plan

Considering the population growth and the increase in water demand, the capacity expansion of the treatment plant was planned in phase, and it was divided into three phases by 2031.

Table 2-21 Expansion Plan of STP of Master Plan (2009) (1,000m³/d)

Category	Total	Phase I (2011)	Phase II-I (2016)	Phase II-II (2021)	Phase III-I (2026)	Phase III-II (2031)
RS STP	460	220	-	240	-	-
RN STP	360	-	260	-	100	-
LS STP	110	-	110	-	-	-
LN STP	22	-	-	-	22	-
Total	952	220	370	240	122	-

2.3.2.1.4 Estimated Project Cost

Table 2-22 Estimated Project Cost of Master Plan (2009) (US\$ thousands)

Category	Total	Phase I (2011)	Phase II-I (2016)	Phase II-II (2021)	Phase III-I (2026)	Phase III-II (2031)
Total Project Cost	1,830,779	135,358	404,985	529,018	448,057	313,361
I. Management and Others	104,573	7,874	21,354	31,373	25,389	18,583
- Design	65,357	4,921	13,346	19,608	15,868	11,614
- Supervision	39,216	2,953	8,008	11,765	9,521	6,969
II. Construction	1,437,863	108,263	293,599	431,370	349,111	255,520
- STP	421,797	88,427	157,400	92,848	83,122	-
- Sewer network	362,799	5,881	20,322	57,263	121,992	157,341
- Pumping Station	19,899	-	-	3,681	16,218	-
- Household connection	396,009	-	59,152	214,222	74,231	48,404
- Night Soil treatment	79,986	-	18,910	21,083	18,910	21,083
- Latrine improvement	26,659	4,113	11,125	3,058	2,900	5,463
- Direct operation	130,715	9,842	26,691	39,215	31,738	23,229
III. Q & M	77,124	5,807	15,748	23,138	18,725	13,706
IV. Reserve	143,786	10,826	29,267	43,023	35,118	25,552
V. Collection trucks	7,300	2,000	5,300	-	-	-
VI. Compensation	60,133	588	39,624	-	19,921	-

2.3.2.2 Sanitation & Drainage Improvement Strategy and Master Plan (2017)

2.3.2.2.1 Introduction

CWSISP develops comprehensive improvement strategies and master plans for the city's sanitation & drainage sectors with the support of the World Bank.

2.3.2.2. Sewerage Service Coverage

In the sanitation master plan, the sewerage service coverage of Chattogram City was divided into 6 areas.

Table 2-23 Sewerage Service Coverage of Master Plan (2017)

Category	Location	Area of STP (ha)	Capacity (m³/d, 2030)	Remarks
Catchment-1 (PESSCM-1)	Halishahar	66	100,000	
Catchment-2	Kalurghat	19	100,000	
Catchment-3	Fatehabad	30	60,000	
Catchment-4	East Bakalia	33	70,000	
Catchment-5	North Kattali	22	80,000	
Catchment-6	Patenga	30	100,000	

2.3.2.2.3 Planning Framework

The final target year of the sanitation master plan is 2030, and the planning framework by sewerage service area is as follows.

Table 2-24 Planning Framework of Master Plan (2017)

Ca	ategory	STP-1	STP-2	STP-3	STP-4	STP-5	STP-6	Total
Po	pulation	749,531	316,868	234,990	405,483	174,274	199,798	2,080,945
	Domestic	68,957	29,152	21,619	37,304	16,033	18,381	191,447
	Non-Domestic	8,275	3,498	2,594	4,477	1,924	2,206	22,974
Daily Average	Large consumer	5,052	7,858	3,929	2,245	6,736	37,870	63,690
7.1.0.0.90	Underground Water	18,132	12,130	5,585	6,292	5,448	5,781	53,368
	Total	100,416	52,638	33,728	50,318	30,141	64,238	331,479
Rainw	ater Inflow	18,132	12,130	5,585	6,292	5,448	5,781	53,368
	Babbit Factor	1.33	1.58	1.68	1.50	1.78	1.73	1.52
	Peak Factor	1.30	1.30	1.30	1.30	1.30	1.30	1.30
Daily	Domestic	91,747	46,074	36,274	56,122	28,559	31,859	290,636
Maximum	Non-Domestic	11,010	5,529	4,353	6,735	3,427	3,823	34,876
	Large consumer	6,567	10,216	5,108	2,919	8,756	49,231	82,798
	Total	109,323	61,819	45,735	65,776	40,743	84,913	408,309
Gra	and Total	145,588	86,078	56,905	78,360	51,639	96,474	515,046

Table 2-25 Estimated Project Cost of Master Plan (2009) (US\$ million)

Category	STP-1	STP-2	STP-3	STP-4	STP-5	STP-6	Total
Deep Sewers	13.55	4.79	2.00	5.43	0.00	0.00	25.77
Gravity Sewers	58.48	44.80	26.42	27.92	21.11	29.81	208.53
Manholes	10.78	8.03	4.42	4.63	3.80	4.61	36.26
Force Mains	1.70	0.35	3.03	0.04	0.54	0.94	6.18
Utility Realignment	17.54	13.44	7.93	8.37	6.33	8.94	62.56
Pump Stations	7.28	8.74	8.21	1.54	1.66	4.22	31.65
Service Lines	34.07	18.93	17.98	19.88	18.36	21.77	131.00
Household Connections	18.13	5.54	5.32	9.62	3.94	7.42	49.97
Interceptors	4.10	7.43	0.00	4.50	1.74	0.00	17.77
STPs	45.00	33.30	18.00	35.10	10.50	15.00	156.90
Total A	210.64	145.35	93.30	117.02	67.99	92.71	726.60
Physical Contingencies (5% of Total A)	10.53	7.27	4.66	5.85	3.40	4.64	36.33
Total B	221.17	152.62	97.96	122.87	71.39	97.35	762.93
Detailed Design & Construction Supervision (7% of Total A)	14.74	10.17	6.53	8.19	4.76	6.49	50.86
Total C	235.91	162.79	104.49	131.06	76.15	103.84	813.79
VAT (15% of Total C)	35.39	24.43	15.83	19.66	11.44	15.62	122.37
Total D	271.30	187.33	121.35	150.74	87.74	119.72	938.19
Price contingencies (10% of Total D)	27.13	18.73	12.14	15.07	8.77	11.97	93.82
Total E	298.43	206.07	133.49	165.81	96.52	131.69	1,032.01

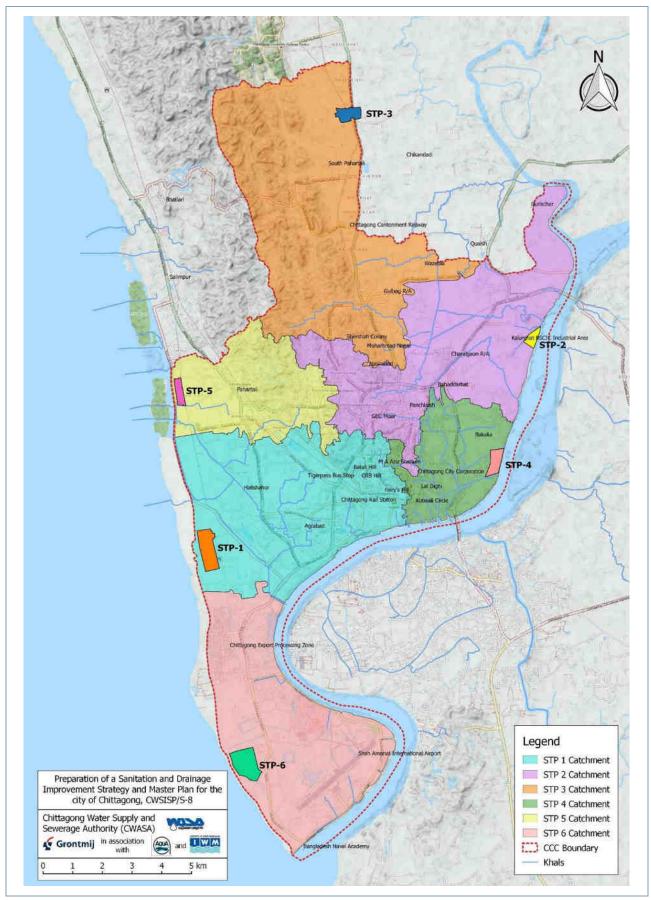


Figure 2-13 Sewerage Service Coverage of Master Plan (2017)

2.4 Existing Water Supply & Sewerage System

2.4.1 Statistics of Water Supply & Sewerage System

2.4.1.1 Introduction

According to statistical surveys, Bangladesh's population proportion of drinking water sources increased from 68% to 84%, from 1990 to 2014.

Table 2-26 Population Using Drinking Water Sources (%)

Year	Average	Urban	Rural
1990	68	81	65
1995	72	82	69
2000	76	83	74
2005	80	84	78
2010	84	85	83
2014	84	86	84

^{*}Source: Millennium Development Goals, Bangladesh Progress Report (2015, General Economics Division)

Chattogram has facilities for water supply but no facilities for sewage treatment. The number of households supplying water supply in the CCC area managed by CWASA is showing a 147% increase from about 54,500 connections in 2014 to about 80,000 connections in 2022, and is divided into two MODs (Maintenance and Operation Division) for maintenance and operation. The existing water supply network consists of transmission and distribution network of about 574km, and there are various types of pipes.

Table 2-27 Water Supply Network

Diameter	Total	AC	CI	DI	GI	MS	PVC	Etc.
Total	574.22	137.40	1.52	43.55	0.35	2.01	388.97	0.42
40	0.06	-	-	-	-	-	0.06	-
50	5.08	-	-	-	-	-	5.08	-
100	249.17	5.81	-	0.01	0.35	0.34	242.25	0.41
150	92.10	10.61	-	0.07	-	0.68	80.74	-
200	83.29	32.34	-	0.10	-	0.29	50.56	-
225	0.78	0.02	0.76	-	-	-	-	-
250	0.41	0.25	-	-	-	0.16	-	-
300	70.18	54.73	0.76	5.81	-	0.08	8.79	0.01
450	32.39	17.88	-	12.58	-	0.46	1.47	-
600	26.88	15.76	-	11.10	-	-	0.02	-
750	1.81	-	-	1.81	-	-	-	-
900	10.26	-	-	10.26	-	-	-	-
1200	1.81	-	-	1.81	-		-	-

^{*}Source: CWASA

^{*}Asbestos Cement (AC), Cast Iron (CI), Ductile Iron (DI), Galvanised Iron (GI), Mild Steel (MS), Polyvinyl Chloride (PVC)

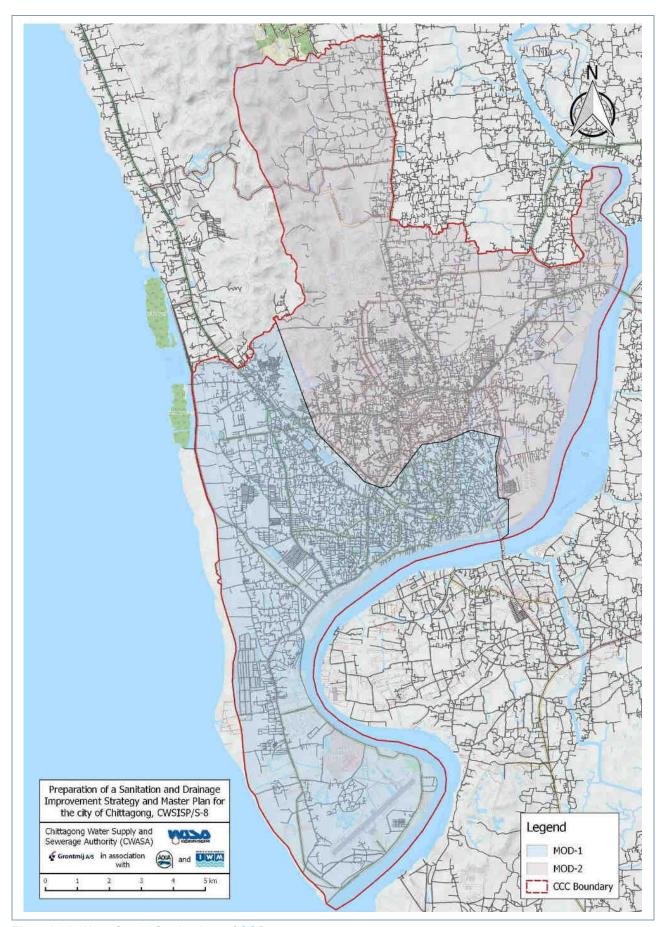


Figure 2-14 Water Supply Service Area of CCC

2.4.1.2 Statistics of Water Supply System

CWASA has been established statistic of water supply system for the non-revenue water, operation rate, number of water connections as below.

Table 2-28 Statistics of Water Supply System

Year	Month	Non- Revenue Water (%)	Operation Rate (%)	Water Supply Service Rate (%)	Water Connections (Nos.)	WTP Capacity (MLD)	Deep Tube Well (MLD)	Network Length (m)
	Apr	30	68	57	66,534	323	40	768
2019	Jun	28	119	57	67,027	323	40	768
2019	Sep	25	88	56	67,849	323	35	769
	Oct	26	99	56	68,122	323	35	769
	Jan	27	77	57	68,905	323	36	769
	Feb	25	68	57	69,109	323	36	769
	Mar	32	72	57	69,163	323	37	770
	Apr	33	428	57	69,159	323	37	770
	May	31	141	57	69,149	323	38	770
2020	Jul	25	52	56	69,551	323	37	770
	Aug	22	83	56	69,991	323	32	770
	Sep	22	69	57	70,747	323	37	770
	Oct	24	71	57	71,302	323	37	770
	Nov	17	64	58	71,552	323	37	770
	Dec	21	71	58	71,827	323	36	770
	Jan	23	79	58	72,282	323	38	770
	Feb	19	56	58	72,588	323	39	770
	Mar	29	41	59	72,858	323	38	770
	Apr	34	105	59	73,055	323	52	770
	May	30	88	59	73,556	323	61	770
2021	Jun	30	74	60	73,970	323	59	770
2021	Jul	28	70	60	74,918	323	49	962
	Aug	31	60	61	75,740	323	58	962
	Sep	31	76	61	75,821	323	63	962
	Oct	29	81	61	76,044	323	57	962
	Nov	28	71	60	76,161	323	66	962
	Dec	28	71	60	76,461	323	61	962
	Jan	30	73	60	76,809	323	59	962
	Feb	25	58	60	77,149	466	55	962
	Mar	32	55	61	77,422	466	51	962
2022	Apr	32	90	61	77,757	466	49	962
	May	35	71	61	78,263	466	49	962
	Jun	33	142	62	78,980	466	48	962
	Jul	33	66	62	79,431	466	48	962

^{*}Source: CWASA MIS (Management Information System) Report

Water consumption and water connection of 7 wards in the project area is as below.

Table 2-29 Water Consumption and Water Connection in the Project Area

Table 2-29			прион а		202			, ojest	, o o.			2022			
Cat	egory		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Jun	Jul	Aug
	Dom	Cons.	110	110	112	110	112	109	84	81	71	62	60	54	54
	Dom.	Conn.	18	18	18	18	18	18	18	18	18	18	23	23	23
South	Non-	Cons.	105	109	112	107	116	111	90	90	78	66	43	42	58
Pahartali	Dom.	Conn.	7	7	7	7	7	7	7	7	7	7	7	7	7
	Total	Cons.	215	219	223	217	228	220	175	171	149	129	103	96	112
	IUlai	Conn.	25	25	25	25	25	25	25	25	25	25	30	30	30
	Dom.	Cons.	8,749	8,923	9,224	9,188	7,284	5,612	3,160	3,414	3,267	3,245	3,052	3,078	3,210
	DOIII.	Conn.	1,031	1,038	1,035	1,032	1,035	1,035	1,051	1,065	1,075	1,072	1,080	1,090	1,088
Jalalabad	Non-	Cons.	921	891	1,090	1,024	1,061	909	983	1,086	1,005	1,042	859	815	894
Jaiaiabad	Dom.	Conn.	144	140	144	145	143	148	149	153	152	154	155	154	157
	Total	Cons.	9,670	9,814	10,313	10,212	8,344	6,521	4,144	4,500	4,272	4,287	3,911	3,893	4,104
	Total	Conn.	1,175	1,178	1,179	1,177	1,178	1,183	1,200	1,218	1,227	1,226	1,235	1,244	1,245
	Dom.	Cons.	3,608	3,862	3,796	3,994	4,156	3,865	3,722	3,973	3,675	3,849	3,454	3,606	4,229
	Dom.	Conn.	1,025	1,027	1,024	1,111	1,116	1,137	1,152	1,153	1,160	1,173	1,184	1,197	1,205
Panchlaish	Non-	Cons.	383	525	522	529	961	330	569	603	588	551	533	398	571
1 dilonidion	Dom.	Conn.	49	50	48	50	51	51	51	50	51	52	52	53	52
	Total	Cons.	3,991	4,387	4,318	4,523	5,117	4,195	4,291	4,576	4,263	4,400	3,987	4,004	4,799
	- TOTAL	Conn.	1,074	1,077	1,072	1,161	1,167	1,188	1,203	1,203	1,211	1,225	1,236	1,250	1,257
	Dom.	Cons.	19,347	18,790	19,862	19,819	20,259	19,381	18,624	19,012	18,059	18,746	18,159	18,985	19,269
	50	Conn.	5,564	5,609	5,616	5,621	5,620	5,647	5,660	5,686	5,714	5,730	5,757	5,792	5,822
Chandgaon	Non-	Cons.	630	779	817	790	823	802	808	891	885	899	923	945	913
Onanagaon	Dom.	Conn.	251	254	257	257	257	256	255	257	255	256	260	260	264
	Total	Cons.	19,977	19,569	20,679	20,609		20,184	19,432	19,903	18,944	19,645	19,082	19,930	20,182
		Conn.	5,815	5,863	5,873	5,878	5,877	5,903	5,915	5,943	5,969	5,986	6,017	6,052	6,086
	Dom.	Cons.	9,202	9,277	9,467	9,625	9,861	9,686	9,727	10,394	9,537	9,945	9,478	9,796	
		Conn.	2,853	2,848	2,855	2,865	2,877	2,886	2,902	2,914	2,920	2,933	2,944	2,946	2,977
West	Non-	Cons.	604	647	666	663	690	684	720	726	657	654	739	673	698
Sholashahar	Dom.	Conn.	177	177	176	177	175	178	178	177	175	173	176	175	182
	Total	Cons.	9,806	9,924	10,133	10,288	10,551	10,370	10,447	11,120	10,194	10,599	10,217	10,469	11,188
		Conn.	3,030	3,025	3,031	3,042	3,052	3,064	3,080	3,091	3,095	3,106	3,120	3,121	3,159
	Dom.	Cons.		21,072											
		Conn.	4,402	4,411	4,414	4,412	4,429	4,423	4,447	4,464	4,506	4,512	4,537	4,573	4,595
Sulakbahar	Non-	Cons.	2,664	2,678	2,855	2,962	3,042	2,605	2,363	2,659	2,436	2,501	2,449	2,457	2,588
	Dom.	Conn.	480	479	483	484	481	481	482	484	484	484	487	486	500
	Total	Cons.		-		24,957	·					24,886	_	24,164	
		Conn.	4,882	4,890	4,897	4,896	4,910	4,904	4,929	4,948	4,990	4,996	5,024	5,059	5,095
	Dom.	Cons.	7,247	7,025	6,975	7,368	7,146	7,088	6,949	7,510	6,864	7,133	6,889	6,935	7,169
		Conn.	3,511	3,505	3,517	3,526	3,531	3,533	3,560	3,572	3,584	3,608	3,635	3,634	3,671
North	Non-	Cons.	552	518	607	529	560	657	624	648	611	700	659	617	699
Pahartali	Dom.	Conn.	115	116	113	114	114	117	117	117	111	112	114	113	120
	Total	Cons.	7,799	7,542	7,582	7,897	7,706	7,745	7,573	8,159	7,475	7,833	7,548	7,552	7,867
		Conn.	3,626	3,621	3,630	3,640	3,645	3,650	3,677	3,689	3,695	3,720	3,749	3,747	3,791
Grand To	tal	Cons.		75,205					68,637		67,784			70,109	
	-	Conn.	19,627	19,679	19,707	19,819	19,854	19,917	20,029	20,117	20,212	20,284	20,411	20,503	20,663

^{*} Source: CWASA Ward Wise Monthly Summary Billing Report, Cons (Consumption, m³/d), Conn (Connection, Nos)

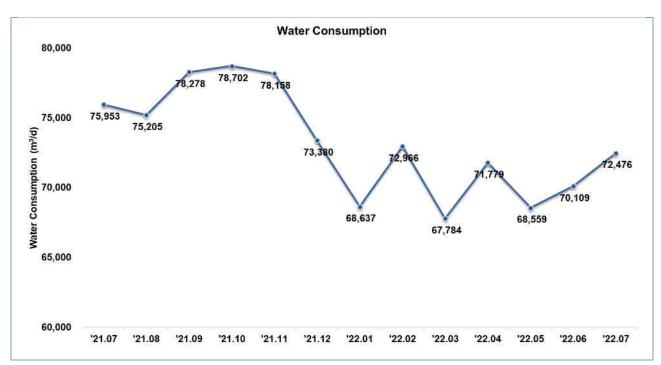


Figure 2-15 Water Consumption Trends of the Project Area

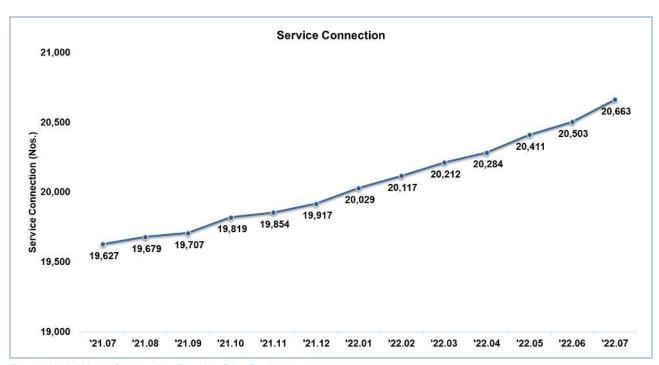


Figure 2-16 Water Connection Trends of the Project Area

2.4.1.3 Statistics of Sewerage System

As of 2022, statistics of sewerage system is not available because there is no centralized sewerage system installed in the Chattogram City, so all the domestic and non-domestic wastewater is discharged into nearby rivers or waterways after treatment in the on-site system with septic tanks or without any treatment. It will be expected to set up gradually when construction of the sewerage system of Catchment-1 (PESSCM-1) is completed which is currently under construction.

2.4.2 Existing Water Supply System

2.4.2.1 Introduction

CWASA is operating two WTP and one IRP (Iron Removal Plant) in 2023. Water supply service coverage of CCC under CWASA is about 62% as below.

Figure 2-17 Water Supply Service Coverage of CCC

2.4.2.2 Water Treatment Plant

2.4.2.2.1 Mohara Water Treatment Plant

Mohara water treatment plant has been operated since 1987. Raw water is intake directly from the nearby Halda River and pumped and transported to the water treatment plant for further treatment. The treated water by rapid filtration is sent to the reservoir in the CCC area and supplied through the distribution network.

Table 2-30 Summary of Mohara WTP

Category	Description
Facility	Mohara WTP
Location	Chandgaon, Chattogram
Water Source	Halda River
Capacity	90,000 m³/d
Water Treatment Process	Rapid Filtration (Intake Pump $ ightarrow$ Sand Trap $ ightarrow$ Flocculation $ ightarrow$ Sedimentation $ ightarrow$ Rapid Sand Filtration $ ightarrow$ Disinfection $ ightarrow$ Clean Water Tank & Pump $ ightarrow$ Storage Tank $ ightarrow$ Water Supply)
Sludge Treatment Process	Sludge and Backwash Water discharge to Halda River

Table 2-31 Details of Mohara WTP

Category	Dimension	Capacity
Intake Pump	45min/d x 2, 110kW (132hp)	129,600m³/d
Sand Trap	0.18mm/s x 2, 120 min	
Flocculation	10s/chamber x 2 nos, 5.6kW (7.5hp)	
Sedimentation	HRT 1.2hour, 24 nos, 0.75mm/s	
Rapid Filtration	B 2.44m x L 9.1m x H 1.22m x 8, 3.1mm/s	
Clean Water Tank	2.27ml x 5.0m, HRT 3 hour	11,400m ³
Emergency Generator	1000kW x 2	
Sludge transfer Pump	645L/s x 3, 22.4kW (30hp)	

Table 2-32 Function of Mohara WTP Facility

Facility	Function	Remarks
Intake Pump	Pump the raw water from river to the WTP	
Sand Trap	Remove sand and grit from the raw water	
Chemical Injection	In-line method using Diaphragm Pump to inject and rapidly mix chemicals in the pipe	
Flocculation	Coagulation and floc formation with the chemical injection to remove the colloid materials	
Sedimentation	Settling to remove colloid material	
Rapid Filtration	Provide the rapid and efficient removal of relatively large suspended particles	
Chlorine Disinfection	Chlorine is injected into the connection pipe between the rapid sand filtration and the clean water tank.	
Clean Water Tank & Pump	Store the treated water and pump the water to the storage tank	

Figure 2-18 Layout of Mohara WTP

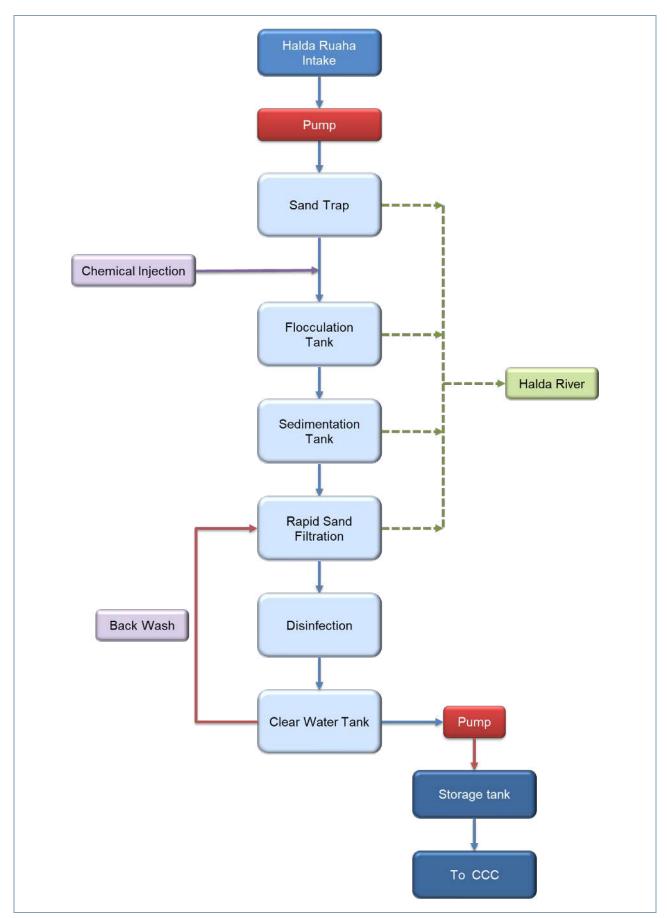


Figure 2-19 Process Flow Diagram of Mohara WTP

2.4.2.2.2 Modunaghat WTP

The Modunaghat water treatment plant began operation in 2017. Water is taken directly from the nearby Halda River and pumped and transported to the water treatment plant. The Water treated by rapid filtration is sent to the reservoir in the CCC area and supplied through the drainage pipe.

Table 2-33 Summary of Modunaghat WTP

Category	Description		
Facility	Modunaghat WTP		
Location	Hathazari, Chattogram		
Water Source	Halda River		
Capacity	90,000 m³/d		
Water Treatment Process			
Sludge Treatment Process	Composting and sale after thickening and dewatering		

Table 2-34 Details of Modunaghat WTP

Category	Dimension	Capacity
Intake	Civil Q=200,000m³/d, Machine Q=100,000m³/d	100,000m³/d
Mixing Tank	W 5.0m x L 5.0m x H 6.0m	
Flocculation	W 1.7m x L 55.0m x H 4.0m (Volume=370m ³)	
Sedimentation	W 10.0m x L 21.0m x H 4.0m x 6	
Rapid Filtration	W 5.2m x L 13.0 x 10	
Clean Water Tank	W 35.0 x L 29m x H 3.0 x 2	6,000m³/d
Sludge Thickening	Gravity Thickening, D 20m x H 5.0m x 4	6,300m ³
Sludge Dewatering	Centrifugal Dewatering	

Table 2-35 Function of Modunaghat WTP Facility

Facility	Function	Remarks
Intake & Screen	Water is taken directly from the river and impurities; sand and small stones are removed through a screen	
Intake Pump	Pump the raw water from river to the WTP	
Chemical Injection	In-line method using Diaphragm Pump to inject and rapidly mix chemicals in the pipe	
Flocculation	Coagulation and floc formation with the chemical injection to remove the colloid materials	
Sedimentation	Settling to remove colloid material	
Rapid Filtration	Provide the rapid and efficient removal of relatively large suspended particles	
Disinfection	Chlorine is injected into the connection pipe between the rapid sand filtration and the clean water tank.	
Clean Water Tank & Booster Pumping Station	Store the treated water and pump the water to the storage tank	
Sludge Thickening	Thicken the sludge generated in the water treatment process and reduces the volume of the sludge	
Sludge Dewatering	Sludge dewatering and composting	



Figure 2-20 Layout of Modunaghat WTP

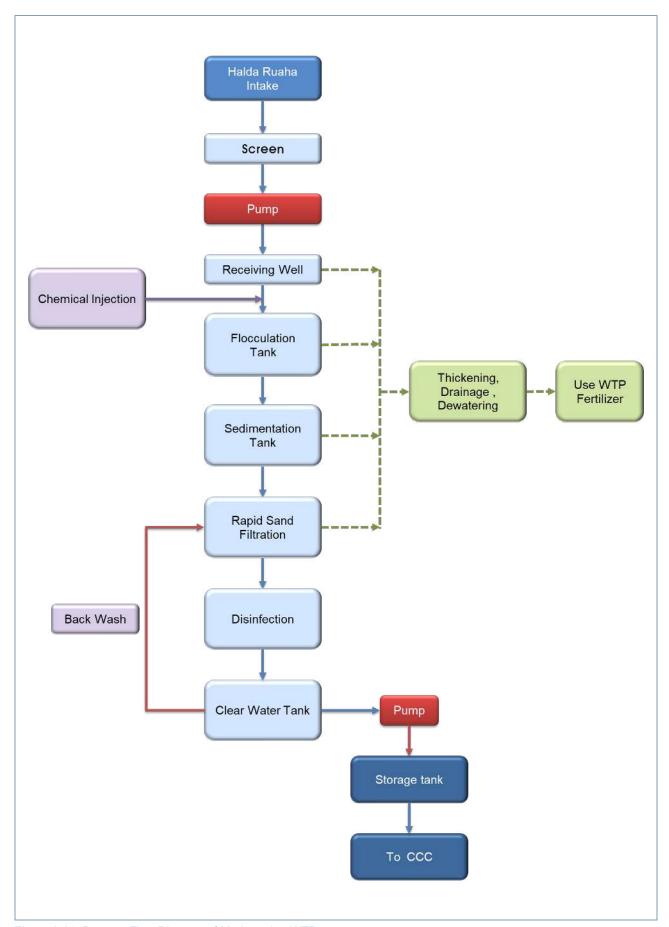


Figure 2-21 Process Flow Diagram of Modunaghat WTP

Table 2-36 Photo of Modunaghat WTP

Category	Photo	Status
Screen		After taking water from the Halda Ruaha River, impurities are removed through a fine screen.
Intake Pump		Transferring raw water from the screen to the receiving well through the pump facility.
Flocculation		 While transferring from the receiving well to the mixing tank, the coagulant is injected and mixed. Form a floc from the flocculation and transfer it to the sediment. Slowly precipitate the floc and transfer the treated water to a rapid filter.
Rapid Filtration		 Purified water is produced by filtering the microflocs that are not removed from the settling tank through a filter. Perform periodic backwashing to maintain filter yarn quality and comply with water purification quality.
Disinfection		 Disinfection by injecting chlorine into the filtered water produced in the rapid filter. The clear well consists of a closed structure to supply clean water and prevent foreign substances from entering.
Sludge Thickening & Dewatering Facility		 Thicken the sludge and utilize it after reduction and dewatering.

2.4.2.2.3 Kalurghat Iron Removal Plant

Chattogram has been operating Kalurghat IRP since 1977 to remove iron dissolved in groundwater. It collects raw water from 41 hearts and operates iron removal and water purification facilities, and produces an average of 35,000 to 45,000m³/d per day.

Table 2-37 Summary of Kalurghat IRP

Category	Description		
Facility	Kalurghat IRP		
Locatiion	Chandgaon, Chattogram		
Water Source	41 Deep well		
Capacity	64,000 m³/day		
Water Treatment Process			

Table 2-38 Details of Kalurghat IRP

Category	Dimension	Capacity
Aerated Oxidized Pond	W 3.4m x L 13.2m x H 4.4m x 2 tower	37,800m³/day
Sedimentation	W (46.4~34.2) m x L (79.2~68.5) m x H 3.1m x 2	37,800m³/day
Filtration 1	W 4.9m x L 6.7m x 8 units	37,800m³/day
Filtration 2	W 8.2m x L 13.3m x 4units	18,900m ³ /day
Clean Water Tank	W 29.9m x L 98.5m x H 2.9m x 1 tank	Nominal V = 7,560m ³ Actual V = 6,800m ³
	14.2 m^{3} /min $ imes$ 63m $ imes$ 260 Kw $ imes$ 1 units	
Moter Drive Pump	$8.1\mathrm{m}^{_3}$ /min $ imes$ 63m $ imes$ 200 Kw $ imes$ 1 units	
	12.2 m^{3} /min $ imes$ 72 m $ imes$ 210 Kw $ imes$ 2 units	
- · » ·	14.2 m^{3} /min $ imes$ 63 m $ imes$ 349 Kw $ imes$ 1 units	
Engine Drive Pump	$8.1\mathrm{m}^{3}$ /min $ imes~63$ m $ imes~200$ Kw $ imes~1$ units	

Table 2-39 Function of Kalurghat IRP Facility

Facility	Function	Remarks	
Aerated Oxidized Pond	Oxidation of iron and floc formation by supplying oxygen to raw water collected from deep wells		
Sedimentation	Sedimentation and removal of formed flocks		
Rapid Filtration	Removal of suspended particles not removed from the settling tank and water treatment		
Disinfection	Rapid filtration to clean water tank injection into the connector		
Clean Water Tank & Booster Pumping Station	Store clean water and transport it to a reservoir using a pump		

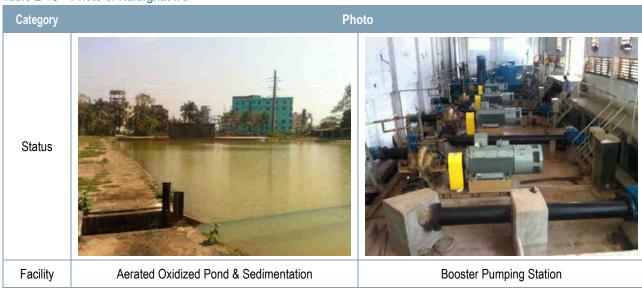


Figure 2-22 Layout of Kalurghat IRP

Table 2-40 Photo of Kalurghat IRP

2.4.2.3 Storage Tank

There are 10 Storage Tank used in the CCC area managed by the project implementation agency.

Table 2-41 Storage Tank Status

Facility	Capacity(m²)	H. W. L(m)	L. W. L(m)	Remarks
Halishahar Tank 1 RC Elevated	455	29.3	24.7	
Halishahar Tank 2 RC Ground	227	10.0	N/A	
DC Hill RC Elevated Tank	455	48.8	43.9	
ADC Hill Ground Tank	4,546	38.1	33.5	
Percival Hill	455	42.7	38.1	
Dampara Waterworks RC Ground Reservoir	68	N/A	N/A	
Parade Corner RC Ground Reservoir	45	25.0	N/A	Self - Use
Medical College Water Tower RC Elevated Tank	455	43.6	40.2	Self - Use
Polytechnic Institute High Lift Pump Station	455	N/A	N/A	Self - Use
Total	7,616			

^{*}Source: CWSISP Sanitation Master Plan (2017)

2.4.2.4 On-going Water Supply Project

As of 2022, CWASA is working on a water purification plant expansion project and a waterworks basic plan establishment project. Details are as follows.

Table 2-42 On-going Water Supply Project

Category	Introduction	Progress	Specification	Remarks
Bhandal Jhuri Water Supply Project Bangladesh	Water Treatment Plant Q=60,000m³/d	On-going Construction	EDCF	Taeyoung
Chattogram water supply expansion and improvement project	Expansion of water supply and improvement of existing facilities	Establishment of Master Plan	WB	Suez

2.4.3 Existing Sewerage System

2.4.3.1 Introduction

Chattogram has facilities for water supply, but no facilities for sewage treatment. Most of the sewage in urban areas is discharged after the first treatment through septic tanks, but slums, living areas for low-income people, do not have a septic tank, so the sewage is discharged into nearby waterways or rivers without treatment, as a result water pollution is in serious issue.

2.4.3.2 On-going Sewerage Project

Currently five sewerage projects including this project are on-going in Chattogram City under CWASA. Although six sewage treatment plants were planned in the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP), number of STP is adjusted during the project implementation of each project due to the difficulty of the land acquisition of sewage treatment plant sites of Catchment-4, Catchment-5 & Catchment-6 as below.

- STP of Catchment-5 & Catchment-6 is planned to be integrated in the site of STP of Cathcment-1 (PESSCM-1).
- STP of Catchment-2 & Catchment-4 is planned to be integrated in the site of STP of Cathcment-2.

Table 2-43 On-going Sewerage Projects

Category	Location of STP	Capacity of STP (Final/Phase 1, m³/d)	Fund Source	Current Progress
Catchment-1 (PESSCM-1)		100,000	GOB	Under Construction
Catchment-5	Halishahar	100,000 (50,000)	AFD	EOI
Catchment-6		100,000	PPP	Feasibility Study On-going
Catchment-2&4	Kalurghat	300,000 (60,000)	JICA	Feasibility Study Completed
Catchment-3	Fatehabad	120,000 (60,000)	EDCF	Feasibility Study Completed

2.4.4 Project Executing Agency

2.4.4.1 Introduction

CWASA started managing the water supply and sewage of Chattogram in 1964, and as of 2022, it consists of management, finance, technology and operation departments. The total number of employees is showing a 155% increase from 1,048 in 2016 to 1,624 as of 2022.

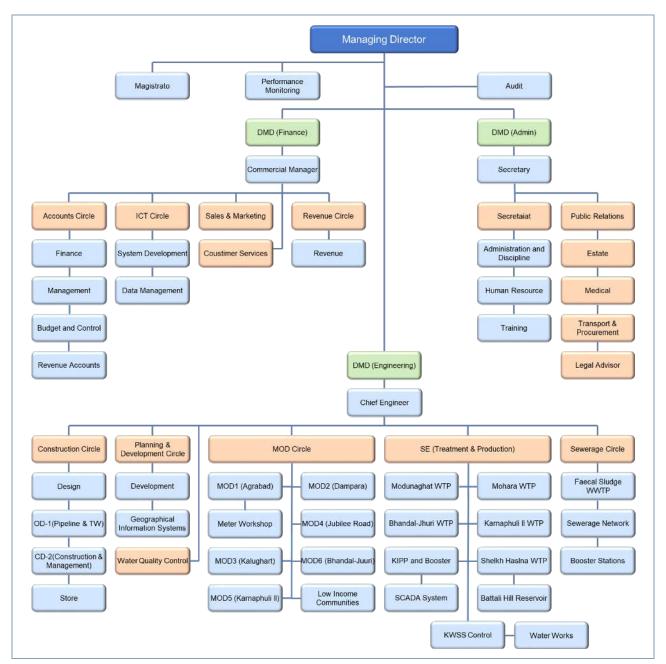


Figure 2-23 CWASA Organization Structure

2.4.4.2 History and Roles

CWASA was established as an autonomous organization to operate and manage water and sanitation in the CCC area of Chattogram city by Ordinance No. 19 promulgated in 1963. Through the WASA Act amended in 1996, CWASA was notified as a water supply management agency and in 2008 as a water supply and sewage management agency. CWASA has a board of 13 members and is responsible for providing Chattogram city's water supply, sanitation and drainage services. Its main functions and roles are as follows;

- Provides water supply for purposes required by law or other ordinances, performs water quality and environmental standards, and sewage management.
- Continuous water purification of raw water and ensuring continuous supply of water according to the Water Supply Act, such as monitoring, for the quality of water supplied.
- Water supply and sanitation facilities development and maintenance.
- Protect and manage water sources.
- Consultation to the Government in establishing relevant policies and guidelines in accordance with drinking water standards.
- Planning and implementing a new project for water supply and sanitation.
- Educate and provide information on public health aspects such as water conservation, sanitation and similar issues.
- Consultation with local governments for the preparation and implementation of plans related to the expansion of water supply and sewerage.
- Supply water and sewage to consumers and collect fees and charges.
- Calculation of Water and Sewage Charges.
- Providing convenience facilities to consumers who use the service.
- Performance to properly perform the water supply function under the Water Supply Act according to the judgment of the board of directors.

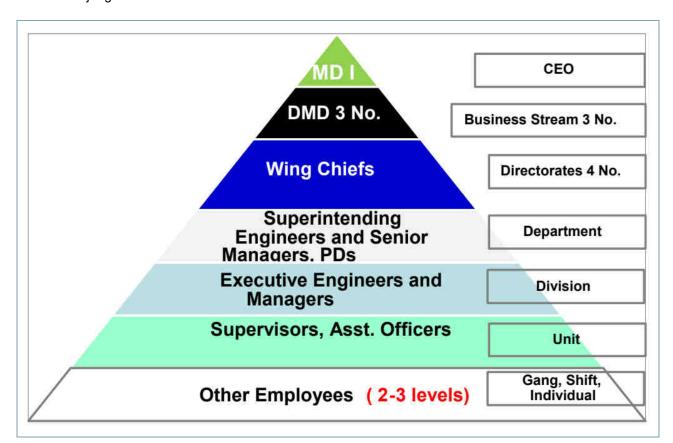


Figure 2-24 CWASA Organization Chart

2.4.4.3 Budget Operation

CWASA's revenue is divided into operating revenue, other revenue, and interest revenue, and details are as follows.

- Operating Revenue: Water tax, underground water using license fee
- Other Revenue: Materials and installation costs for water supply connection, water meter installation costs and commissioning costs
- Interest Revenue: Bank Deposit Interest

CWASA's profit and loss has been in the loss for the past five years, and the income statement from 2015 to 2019 is as follows.

Table 2-44 Income Statement of CWASA (million BDT)

Category	2015~2016	2016~2017	2017~2018	2018~2019	Change Rate
Total Revenue	831	1,052	1,259	1,422	71
1. Operating Revenue	641	845	1,050	1,210	89
(a) Water Tax	525	754	925	1,088	107
(b) Underground Water license fee	116	91	72	122	5
2. Other Revenue	52	90	72	58	12
3. Interest Revenue	138	117	137	154	12
Total Cost	1,189	1,731	2,130	2,491	110
1. Operating Cost	893	1,323	1,691	1,867	109
(a) Salary and benefit	85	110	124	137	58
(b) Electricity and Power	299	373	431	471	58
(c) Depreciation	388	701	956	1,059	173
(d) Chemical	24	20	64	61	154
(e) Others	97	119	116	142	46
2. General Expense	231	334	357	379	64
3. Collection Cost	36	45	75	59	64
4. Financial Cost	29	29	7	186	541
Pretax Net Profit (loss)	-358	-679	-871	-1,069	199
After tax Net Profit (loss)	-361	-683	-879	-1,079	199
Net Profit Tax without depreciation (loss)	30	22	85	-10	
Total Cost Recovery Level (Total / Revenue)	+43%	+65%	+69%	+75%	

2.4.5 Policy, Legislative and Administrative Framework

2.4.5.1 Background

Formal concern at national level regarding the state of the environment in Bangladesh can be traced back to Independence and the passing of the Water Pollution Control Act of 1973. Bangladesh has in the region of 200 laws and regulatory frameworks either directly or indirectly related to the environment. The laws and policies most relevant taking the proposed project into consideration are;

- Building Construction Act, 1952
- Town Improvement Act, 1953
- Water Supply and Sewerage Authority Ordinance, 1963
- Water Pollution Control Act, 1973
- Environmental Pollution Control Ordinance, 1977
- Chittagong City Corporation Ordinance, 1982
- Chittagong Development Authority Act, 1959
- Environmental Quality Standards of Bangladesh, 1991
- National Environment Policy, 1992
- National Conservation Strategy, 1992
- Environment Conservation Act, 1995
- Environment Protection Act, 1995
- National Environment Management Action Plan, 1995
- Water Supply and Sewerage Act, 1996
- Environment Conservation Rules, 1997
- National Water Policy, 1999
- National Land Use Policy, 2001
- Environment Court Act, 2000
- National Water Management Plan, 2004
- National Policy for Arsenic Mitigation, 2004
- National Sanitation Strategy, 2005
- Sector Development Program, 2006
- National Strategy for Accelerated Poverty Reduction II, 2009
- Bangladesh Climate Change Strategy and Action Plan, 2009
- National 3R (reduce, reuse and recycle) Strategy for Waste Management, 2010

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

2.4.5.2 National Policies and Regulations

Building Construction Act, 1952

The Building Construction Act (1952) and the subsequent Building Construction Rules (1984) seek to prevent the unplanned construction of buildings and other developments which may interfere with planning in other areas.

Town Improvement Act, 1953

Every construction/erection/excavation within the jurisdiction of the planning authority requires permission/approval from the Authorized Officer or appointed Building Construction Committee as per the provision of the Town Improvement Act of 1953. Any type of building construction, housing, commercial, industrial and whatsoever need planning permission and they should be in conformity with the land use provision of Master Plan/Urban Area Plan/Detailed Area Plans of different Strategic Planning Zones (SPZs). The Rules are updated/amended on a regular as well as on a required basis.

Water Supply and Sewerage Authority Ordinance, 1963

The Water Supply and Sewerage Authority Ordinance (1963) authorized the establishment of Water Supply and Sewerage Authorities (WASAs) by local governments to provide adequate and safe drinking water and sewerage services in urban areas. The Chittagong WASA was created pursuant to the ordinance, and tasked to construct, improve and operate water supply and sewerage works and other facilities.

Water Pollution Control Act, 1973

Under the 1973 Water Pollution Control Act, a small unit was established in the Department of Public Health Engineering (DPHE) to monitor pollution of ground water and surface water.

Environmental Pollution Control Ordinance, 1977

The Environmental Pollution Control Ordinance of 1977 provided for the establishment of the Environmental Pollution Control Board, which was charged with formulating policies and proposing measures for their implementation. The Environmental Pollution Control Board was subsequently renamed in 1982 as the Department of Environmental Pollution Control (DEPC), and then again in 1989 as the Department of Environment (DOE) which was placed under the newly formed Ministry of Environment and Forest (MoEF).

Chittagong City Corporation Ordinance, 1982

Chittagong City Corporation Ordinance of 1982, vested authority to the CCC to undertake the following relevant sanitation-related activities;

- Removal, collection and disposal of refuse.
- Provide and maintain a sufficient number of gendered public latrines and urinals.
- Adopt sufficient measures to prevent and control the spread of infection diseases within the city.
- Promotion of public health.
- Control, regulation and inspection of all private sources of water supply within the city.
- Provide public bathing and washing places at suitable locations.
- Provide adequate drainage system giving due consideration to public health and convenience.

Environmental Quality Standards of Bangladesh, 1991

The Environmental Quality Standards (EQS) were approved by the Technical Expert Committee of the DOE on 15 July 1991. The EQS includes standards covering water pollution (incl. drinking water, recreational water, fishing water, industrial water, irrigation water, livestock water and coastal water), air pollution (incl. dust, smoke, mist, fog, fume, sulphureous smog and photochemical smog), noise pollution (incl. setting out permissible levels of noise pollution as per locality i.e. residential, commercial, industrial or institutional, and setting out of regulations for motor vehicles), sewage pollution (incl. particular regulations on sewage pollution to prevent pollution in the public water bodies), and industrial pollution (incl. setting out of standard values for controlling the industrial wastewater categorized by point of discharge, such as inland surface water, sewerage system and on land, as well as for air pollution and odours caused by industrial emissions). Soil pollution standards have not been included in the EQS because at the time of approval, the soil quality criteria had not been established.

National Environment Policy, 1992

Bangladesh's National Environment Policy that was approved in May 1992 sets out the basic framework for environmental action together with a set of broad sector action guidelines. The key elements of the policy focus on maintenance of the ecological balance when considering national growth and development, protection against natural disasters, identification and regulation of all polluting and environmentally-degrading activities, ensuring sustainable utilization of all natural resources and active association with environmentally-oriented international agendas and initiatives. The health and sanitation sector related guidelines of the National Environment Policy set out the following specific objectives;

- To prevent activities which are harmful to public health in all spheres, incl. development activities within the country.
- To integrate environmental concerns into the national health policy.
- To ban the establishment of any industry that produces goods that cause environmental pollution, closure of existing industries in phases and discouragement of the use of such goods through the development and/or introduction of environmentally sound substitutes.
- To develop healthy environments in both rural and urban areas.

National Conservation Strategy, 1992

The National Conservation Strategy of 1992 was one measure undertaken by the government to integrate the environment with development in a policy framework with particular regard to sustainable development in the health and sanitation sectors. The report proposed various recommendations, in particular;

- The national programme 'health for all by the year 2000' should be consistent with the National Environment Policy.
- Course/subjects on environment and hygiene should be included in various levels of the education system.
- The mass media and NGOs should help create national consciousness and public awareness on community hygiene and health care.

Environment Conservation Act, 1995

The Environment Conservation Act of 1995, and all subsequent amendments, is currently the main legislative document relating to environmental protection in Bangladesh. The main objectives of the Act are conservation and improvement of the environment and control and mitigation of pollution of the environment. The main strategies of the Act can be summarized as follows;

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

- Identification of ecologically critical areas, and restriction on the operations which can be carried out in such areas.
- Regulation in respect to vehicular emissions.
- Environmental clearance.
- Regulation imposed on industries and other development activities, incl. discharge permits.
- Production of standards for quality of air, water noise and soil for different areas/purposes.
- Production of standard limits for discharge and emission of wastes.
- Formulation and declaration of environmental guidelines.

Under the Environment Conservation Act (1995), the DOE is mandated to enforce the Act and was given power under the Act, to;

- Close down the activities considered harmful to human life or the environment.
- Declare an area affected by pollution as an ecologically critical area.

Before any new development project can be implemented, the project proposer should first obtain Environmental Clearance from the DOE and procedures for doing so are in place. Failure to comply with any part of the Environmental Conservation Act of 1995 may result in punishment by a maximum of 5 years imprisonment or a maximum fine of Taka 100,000. The Environment Conservation Act (1995) also set the basis for creation of the National Conservation Strategy (1995).

Environment Protection Act, 1995

The Environment Protection Act (1995) authorized the DOE for the declaration of environmentally critical areas, the regulation of polluting industries through Environmental Impact Assessments (EIA) and standards. Through this Act, the DOE has the legal authority to perform as per rule against any person or group if they do something that will create environmental hazards by any means or activities.

National Environment Management Action Plan, 1995

The National Environment Action Plan (NEMAP) is a wide-ranging and multi-faceted plan, which builds on and extends the statements set out in the National Environmental Policy. NEMAP was developed to address issues and management requirements during the period 1995 to 2005 and sets out the framework within which the recommendations of the National Conservation Strategy are to be implemented. The broad objectives of NEMAP include identification of key environmental issues, identification of remedial actions necessary to halt or reduce environmental degradation, improvement of the natural and built environment, conservation of habitats and biodiversity, promotion of sustainable development, and improvement in the quality of life of the people.

Water Supply and Sewerage Act, 1996

The Water Supply and Sewerage Act of 1996 authorizes CWASA to provide adequate and safe drinking water and sewerage services in Chittagong City metropolitan area. Some of the general duties of CWASA include;

- Construction, improvement and maintenance of water works for collecting, purifying, pumping, storing and distributing potable water.
- Construction, improvement and maintenance of sewerage works for collecting, pumping, treating and disposing of sanitary and industrial wastes.
- Construction and maintenance of drainage works for drainage facilities, incl. storm water drainage.

Environment Conservation Rules, 1997

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

The Environment Conservation Rules were published in 1997 under the power vested by the Environment Conservation Act of 1995 for creation of by-laws as a means of implementing the provisions of the Act. The Rules mainly consist of;

- Categorized list (green, amber and red) of projects.
- Application format to take environmental clearance.
- Standards relating to water pollution, air pollution and noise, as well as permitted discharge/emission levels of water and air pollutants and noise by industries.

The 'Rules' incorporate "inclusion lists" of projects requiring varying degrees of environmental investigation e.g. all the new projects under red category generally will require two-steps assessment procedure, firstly an Initial Environmental Examination (IEE) for site clearance and secondly, if warranted, a EIA for technical clearance.

National Water Policy, 1999

Water resources have been of significant importance to the socio-economic development of Bangladesh. The National Water Policy was adopted in January 1999 to provide guidelines to all related Ministries, Agencies, Departments and non-government users and entrepreneurs, including local organizations who are involved in water resources development, maintenance, water supply and water related services in the country. The Water Resources Planning Organization (WARPO) centrally monitors the implementation of the National Water Policy and maintains a National Water Resources Database (NWRD) that preserves and disseminates information/data of the country's water resource and related sectors.

Environment Court Act, 2000

The Environment Court Act of 2000 was passed by Parliament on 6 April 2000 for the establishment of environmental courts for the trial of offences relating to the environmental pollution and matters incidental thereto. Under this Act, an Environment Court will be established in each Division and in addition one or more Environment Appeal Courts will be established. The Environment Appeal Court will be constituted with one judge and to date two Environment Courts and one Environment Appeal Court have been established in Dhaka.

National Land Use Policy, 2001

The optimum use of land and water is reliant on detailed and structured planning which is of particular importance in Dhaka and Chattogram where land availability is rapidly diminishing due to development. Recognizing these issues, the GOB approved the National Land Use Policy in June 2001 in addition to other national policies and measures to prevent land depletion.

National Water Management Plan, 2004

The NWMP was approved by the National Water Resources Council (NWRC) in 2004 and aims at implementing the NWMP within 25 years. It is expected to be reviewed and updated every five years. In 2005, the government included the improvement of water supply and sanitation as part of its agenda for reducing poverty. As of today, there is no information on the updating of the plan.

National Policy for Arsenic Mitigation, 2004

Complementing the NWP, the government adopted a National Policy for Arsenic Mitigation in 2004. The policy emphasizes public awareness, alternative safe water supply, proper diagnosis and management of patients, and capacity building. In terms of alternative supplies, it gives "preference to surface water over groundwater".

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

National Sanitation Strategy, 2005

The section 8.6 Strategies for Improved Urban Sanitation in National Sanitation Strategy (GoB, 2005) specifies that in large cities, sewage treatment technologies with greater emphasis on resources recovery and recycling should be given top priority in improving urban sanitation situate Emphasis should be on less energy intensive technologies e.g., constructed wet land, oxidation ditch, extended aeration, stabilization ponds, etc. Moreover, it has specified in the strategy that appropriate desludging of septic tanks and pit latrines should be enforced and effluent disposed of in a proper manner. Sludge emptying services by City Corporations and Pourashavas should be in place. The Strategy was superseded by the National Water Supply and Sanitation Strategy, 2014.

Sector Development Program, 2006

Water and Sanitation Sector in Bangladesh, 2006 (SDPWSSB) which drew together the relevant sector policies, strategies and targets and provided an avenue for the various policies to be incorporated onto a single platform.

The first SDP-WSSB was prepared by LGD in 2000 to provide a 10-year plan for water supply and sanitation (WSS) sector in Bangladesh. Afterwards, the next SDP for a period of 15 years from 2011 was prepared by the Policy Support Unit of LGD. The objective of the SDP is to provide a framework for planning, implementing, coordinating and monitoring all activities in the WSS sector. As a strategic planning document, it addresses the emerging and the future challenging of the WSS sector and provides a road map for the development of the sector and corresponding sector investment plan.

National Strategy for Accelerated Poverty Reduction II, 2009

"Moving ahead" which is the National Strategy for Accelerated Poverty Reduction II in Chapter 5.3.3 has clearly envisaged that the access to safe water and sanitation is fundamental for improved health.

Bangladesh Climate Change Strategy and Action Plan, 2009

It is envisaged in the Climate Change Strategy to ensure the existing assets (e.g., Coastal and river embankments) are well maintained and fit-to-purpose. It also envisages that urgently needed infrastructure (e.g., Cyclone Shelter and Urban Drainage) is put in place to overcome the impacts of Climate Change.

National 3R (reduce, reuse and recycle) Strategy for Waste Management, 2010

A National 3R (Reduce, Reuse, Recycle) Strategy was passed in 2010 establishing a 3R Department at the Ministry of Environment and Forests to implement waste prevention activities, and an inter-ministerial committee to coordinate activities across ministries. To stimulate private sector investment in waste recycling and treatment plants, the strategy calls for the government to provide tax holidays, soft loans, and available land for the facilities.

2.4.6 Water Supply and Sewage Tariff

2.4.6.1 Water Supply Tariff

The Chattogram's water supply is divided into household, non-household, public water, and religious institution rates. The water supply tariff, the unit price of household water per ton increased by about 181% from 9.92BDT in 2019 to 18.00BDT in 2022, and non-household water increased by about 134% from 27.56BDT in 2019 to 37.00BDT in 2022. The difference in rates between household and non-household use was found to be decreasing from 2.78 times to 2.06 times.

Table 2-45 Water Supply Tariff (BDT/m³)

Category	2019.04	2019.12	2020.04	2020.12	2021.04	2022.01	2022.04	2022.07
Average	14.33	14.33	16.88	16.88	16.88	17.72	17.72	22.75
Domestic	9.92	9.92	12.40	12.40	12.40	13.02	13.02	18.00
Non- Domestic	27.56	27.56	30.30	30.30	30.30	31.82	31.82	37.00
Public	9.92	9.92	12.40	12.40	12.40	13.02	13.02	18.00
Religious Institution	9.92	9.92	12.40	12.40	12.40	13.02	13.02	18.00
Rate of Increase	0%	0%	25%	0%	0%	5%	0%	38%

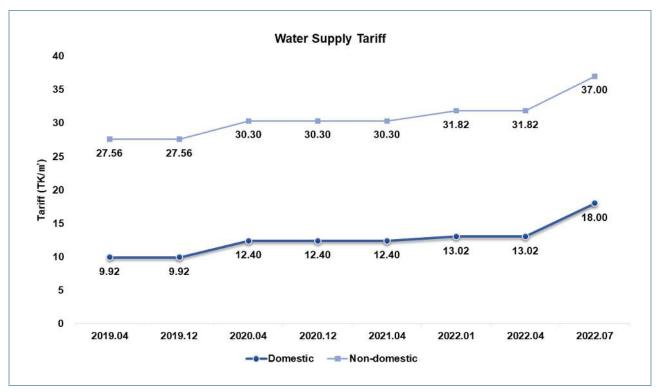


Figure 2-25 Trend of Water Supply Tariff

2.4.6.2 Sewage Tariff

Chattogram does not have a sewage tariff system because there is no sewage facility, but it is urgent to prepare a sewage tariff system as STP-1 construction and STP-2 to 6 feasibility studies are currently being conducted.

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

2.4.6.3 Bangladesh Water Supply and Sewerage Tariff

WASAs in four major cities that manage water and sewerage in Bangladesh have established and are collecting water tariff systems. Sewerage facilities are operated only in Dhaka WASA, and Dhaka WASA collects sewerage fees the same as waterworks.

Table 2-46 Bangladesh Water and Sewerage Bills (BDT/m³)

Cate	egory	CWASA	Dhaka WASA	Khulna WASA	Rajshahi WASA
Water	Domestic	18.00	15.18	8.98	6.81
Water	Non-Domestic	37.00	42.00	14.00	13.62
Courage	Domestic	-	15.18	-	-
Sewerage	Non-Domestic	-	42.00	-	-

2.5 Site Survey

2.5.1 Site Survey

2.5.1.1 Sewage Treatment Plant Site Survey

The project site owned by CWASA was investigated as being penetrated by the N106 road and railroad. The total area is 35.4ha, consisting of 18.7ha on the left bank of the railroad, 11.6ha on the right bank of the road, and 5.1ha in the middle of the road and railroad. Therefore, it was investigated that it would be difficult to utilize the total area.

Figure 2-26 Sewage Treatment Plant Site

Table 2-47 Photo of STP Site

2.5.1.2 Sewage Treatment Area and Sewer

The treatment area corresponds to Catchment-3 established in the Chattogram sewage maintenance master plan and includes a total of seven wards. The South Pahartali area is included in the 100 % treatment area and the rest of the area is included in part.

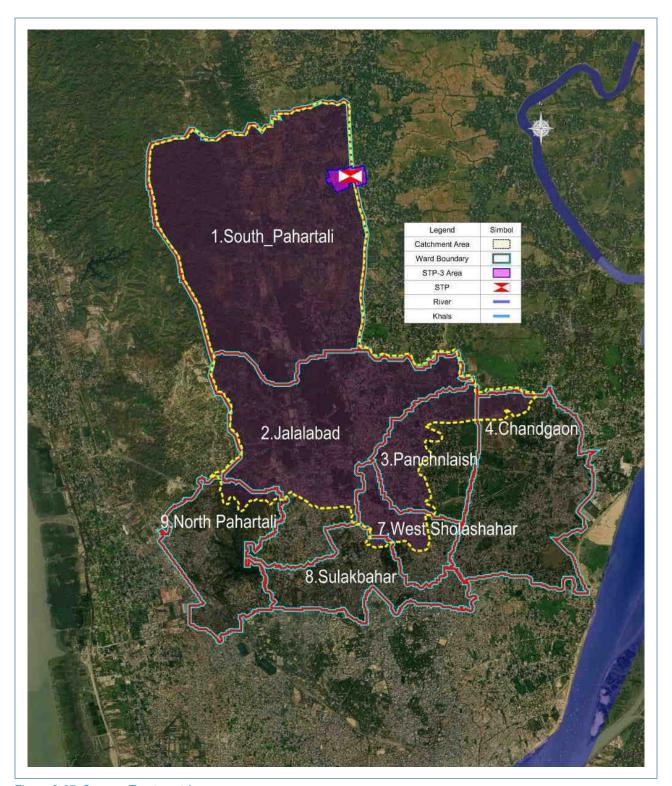


Figure 2-27 Sewage Treatment Area

Since the main route will be planned along the N106 road, a survey on the status of the route was conducted in the direction of Fatehabad from the time of West Sholashahar, the downtown area. The discharge sewer route was planned to be Shitol jharna khal in the Panchlaish region.

Table 2-48 Photo of Sewer Route

2.5.1.3 Faecal Sludge Collection Area

Faecal sludge collection areas scheduled to be established in this plan are outside the CCC managed by CWASA, Hathazari and Raozan.

Table 2-49 Photo of Faecal Sludge collection area

2.5.2 Topographical Survey

2.5.2.1 Introduction

2.5.2.1.1 Objective

Topographic Surveys are used to identify the contour maps of the ground and existing features on the surface of the earth or slightly above or below the earth's surface (i.e., trees, buildings, streets, walkways, manholes, utility poles, retraining walls etc.). Based on topographical and route survey, those are utilized to make layout, general and arrangement drawings and to estimate construction cost.

2.5.2.1.2 Scope of Survey

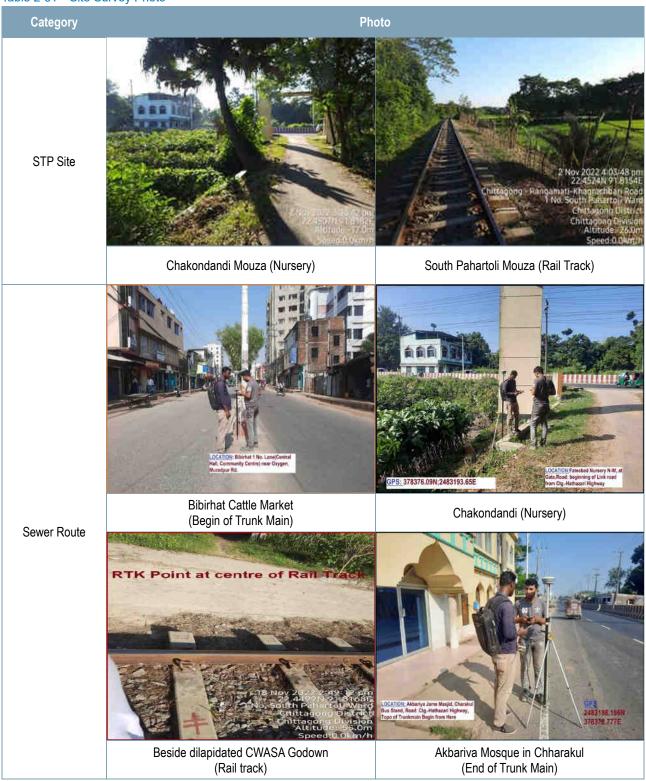
There are six Sewer Catchment areas in CWASA and in each Catchment there will be proposed six Sewage Treatment Plant (STP). Under the current project, STP-03 will be in Catchment No.03 covering the area of Fatehabad that occupies some portion agricultural land and sparsely located habitation. Fatehabad Catchment has seven Wards.

It can be seen that not all the seven wards will contribute entirely the sewage to the STP. Of the 7 Wards, Ward No.09 (North Pahartoli) and Ward No.04 are excluded from the initial selection. A small portion of Ward No.03 (Panchlaish) was included initially. However, the scope of Ward. No.09, Ward No.04 and part of Ward No.03 should be decided by CWASA.

2.5.2.1.3 Spatial Reference System Parameters

The following coordinate system parameters were employed for both horizontal and vertical coordinate information. The geodetic parameters used is as bellow.;

Table 2-50 Horizontal Coordinate System Parameters


Category	Contents
Reference Ellipsoid	WGS84
Flattening	1/298.257223563
Projection	UTM Zone 46 N
Latitude of Origin	0.0
Central Meridian (CM)	93.0
CM Scale Factor	0.9996
False Northing	0.0 m
False Easting	500,000 m
Units of Measurement	SI System (meters)

2.5.2.2 Site Survey

Table 2-51 Site Survey Photo

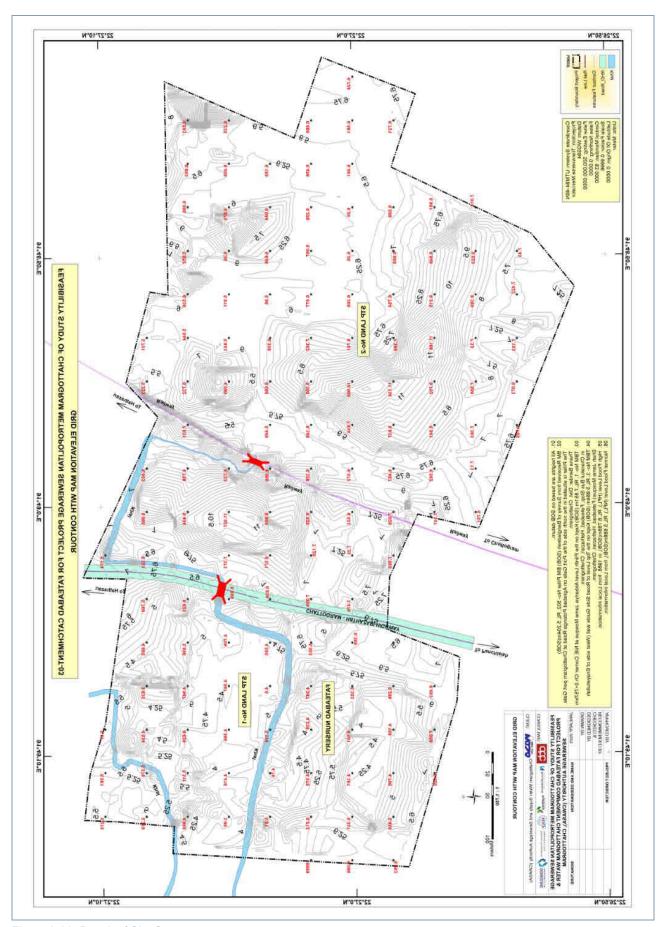


Figure 2-28 Result of Site Survey

2.5.3 Geotechnical Investigation

2.5.3.1 Introduction

2.5.3.1.1 Object

All the data gathered from boring investigation result and soil properties analysis is going to utilize for estimating construction cost in connection with planned site and foundation method, and also for design data of structure basis and excavation and banking.

2.5.3.1.2 Scope of Survey

The scope and contents of geological survey are as follows.

Table 2-52 Scope of Geotechnical Survey

Category	Geological Survey	Remarks
Scope of Survey	Boring investigation at site of STP : 5 boreholes Boring investigation sewer route : 5 boreholes (Trunk Main : 2 points, Sewage Lifting Station : 3 points)	
Contents of Survey	 Equipment: NX gauge Boring investigation: Depth 15.3 ~ 25m, STP 1.5m interval Laboratory Test: Natural Moisture Content/Density Test, Complete Grain Size Analysis, Atterberg Limits, Specific Gravity Test, Tri-axial Compression Test-U.U., Unconfined Compression Test 	

2.5.3.1.3 Location

Table 2-53 Location of boreholes with coordinate

Location	BH No.	Coord N	inate E
Near Oxygen Junction – Trunk Sewer	BH-01	2477061.00	378601.00
Infront of CWASA Godown – STP-50-acre land	BH-02	2483116.00	378339.00
Hathazari-Rangamati Highway at Akbaria Mosque, chharakul for Trunk Main	BH-03	2483336.00	378322.00
Nasirabad Reservoir CWASA for Pump Station (SLS)	BH-04	2475904.00	376961.00
PDB Sub-Station at DTW-38, Annanyan Housing for Pump/SLS Station	BH-05	2477747.00	381954.00
Near Pond West Side of Railway track - STP-50-acre land	BH-06	2483318.00	378061.00
West Side of Railway track - STP-50-acre land	BH-07	2483063.00	377891.00
Mid Position West Side of Railway track - STP-50-acre land	BH-08	2483177.00	378002.00
Mid Position West Side of Railway track- STP-50-acre land	BH-09	2483087.00	378048.00
Near Balu Tila West Side of Railway track - STP-50-acre land	BH-10	2482967.00	378070.00

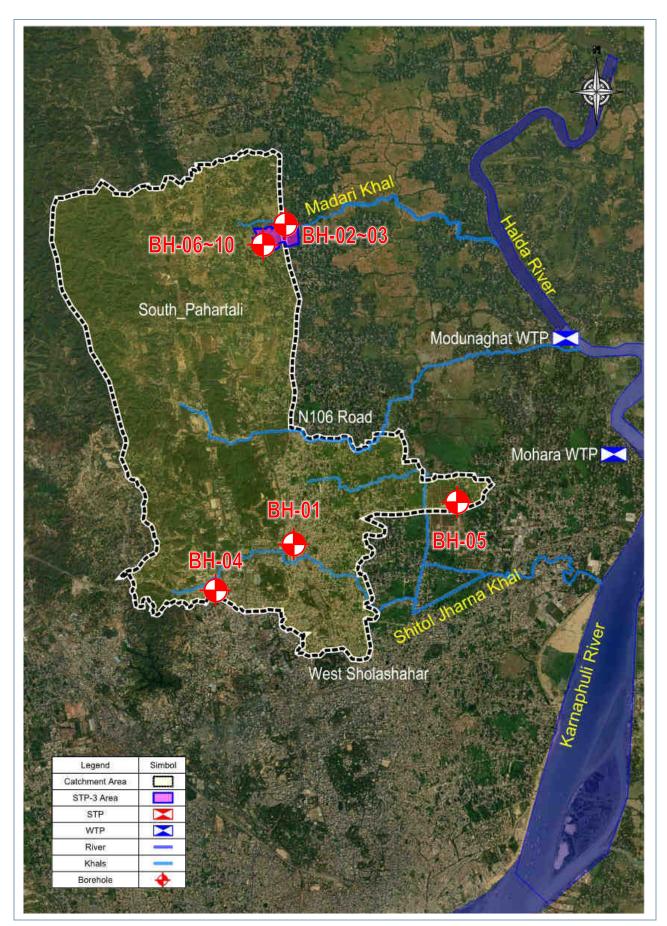


Figure 2-29 Location Map of Geotechnical survey

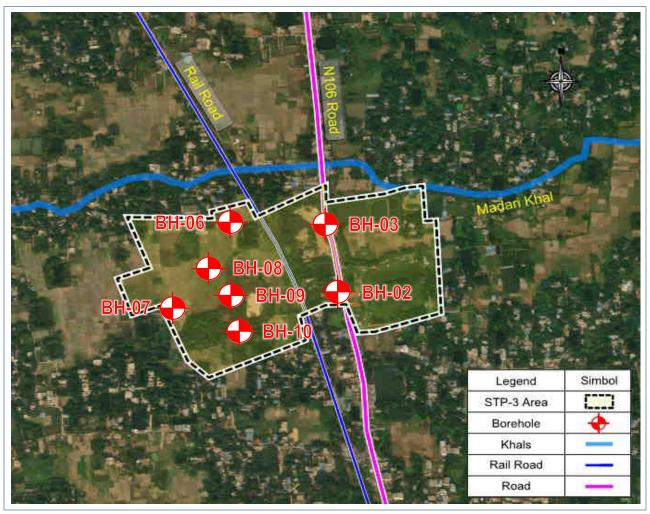


Figure 2-30 Location Map of Geotechnical survey

2.5.3.2 Site Survey

Table 2-54 Photo of Geotechnical survey

2.5.3.3 Result of Survey

2.5.3.3.1 Laboratory Test

In order to understand the physical characteristics of the stratum, samples collected by stratum depth during the drilling process were conducted, and the results of the liquid limit, plasticity limit, plasticity index (PI), particle size analysis, wet unit weight, dry unit weight, and compression test is as follows.

Table 2-55 Summary of Test Results

Boreho	ole No.		ВН	I-01					BH-02			
Sampl	le No.	D02	UD01	D12	D14	D01	UD01	D06	D12	D15	D18	D24
Dep	oth	3.0	8.35 ~ 8.85	18.0	21.0	1.5	3.85 ~ 4.35	9.0	18.0	22.5	27.0	36.0
Natural Wat	ter Content	22.2	29.3	25.3	-	22.0	26.1	42.6	37.9	35.8	31.0	21.5
Specific	Gravity	2.670	2.682	2.673	-	2.670	2.687	2.697	2.693	2.689	2.697	2.671
Wet Unit	Weight		1.830				1.811					
Dry Unit	Weight		1.416				1.436					
	Liquid	35	43	38	NP	32	49	58	53	50	58	34
Atterberg Limits	Plastic	24	27	25	NP	23	27	30	28	26	30	24
	Plasticity Index	11	17	13	NP	9	22	28	25	24	28	10
	Sand (%)	32.2	8.5	28.6	64.6	31.1	16.2	0.9	2.3	3.2	2.1	27.7
Grain Size Analysis	Silt (%)	49.5	68.5	51.5	35.1	52.7	59.2	61.9	66.8	69.1	62.3	54.0
•	Clay (%)	18.3	23.0	19.9	35.1	16.7	24.6	37.2	30.9	27.7	35.6	18.3
Compressi	Strength (kPa)		56.3				54.6					
on Test	Failure (%)		7.5				9.0					

Boreho	ole No.		ВН	-03		ВН	-04		BH-05			
Samp	le No.	D02	UD01	D12	D19	D03	D07	UD01	D08	D15	D22	
De	oth	3.0	6.85 ~ 7.35	18.0	28.5	4.5	10.5	3.85 ~ 4.35	12.0	22.5	33.0	
Natural Wa	ter Content	24.3	38.4	44.7	37.8	23.3	23.5	32.1	46.6	39.8	27.9	
Specific	Gravity	2.668	2.692	2.690	2.682	2.688	2.686	2.693	2.691	2.690	2.689	
Wet Unit	t Weight		1.721					1.849				
Dry Unit	Weight		1.243					1.399				
	Liquid	31	53	52	43	49	46	54	52	50	50	
Atterberg Limits	Plastic	22	29	28	26	28	26	29	27	28	27	
	Plasticity Index	9	24	24	17	21	20	25	25	22	23	
	Sand (%)	30.6	2.1	1.5	2.7	1.2	0.7	14.4	1.4	2.0	8.8	
Grain Size Analysis	Silt (%)	52.7	65.4	67.6	74.3	71.0	74.7	54.7	69.3	67.1	63.5	
•	Clay (%)	16.7	32.5	30.9	23.0	27.8	24.6	30.9	29.3	30.9	27.7	
Compressi	Strength (kPa)		50.8					80.3				
on Test	Failure (%)		8.5					8.0				

Boreho	ole No.			BH-06					ВН	l-07		
Sampl	le No.	D02	UD01	D07	D17	D22	D02	UD01	D08	D14	D20	D23
Dep	oth	3.0	6.85 ~ 7.35	10.5	25.5	33.0	3.0	3.85 ~ 4.35	12.0	21.0	30.0	34.5
Natural Wat	ter Content	28.2	40.9	34.7	36.1	31.5	22.3	36.1	47.6	37.3	35.4	-
Specific	Gravity	2.665	2.694	2.690	2.686	2.692	2.665	2.705	2.702	2.687	2.698	-
Wet Unit	Weight		1.857					1.768				
Dry Unit	Weight		1.317					1.299				
	Liquid	43	56	50	47	52	33	64	62	47	58	NP
Atterberg Limits	Plastic	25	29	28	27	28	23	31	31	27	30	NP
	Plasticity Index	18	27	22	20	24	10	33	31	20	28	NP
	Sand (%)	35.2	7.0	2.9	0.4	2.9	29.3	1.0	1.3	0.5	1.9	69.3
Grain Size Analysis	Silt (%)	45.1	60.5	69.6	73.7	68.0	53.3	59.3	60.1	73.6	62.7	30.7
	Clay (%)	19.7	32.5	27.5	25.9	29.1	17.4	39.7	38.6	25.9	35.4	30.7
Compressi	Strength (kPa)		46.9					7.0				
on Test	Failure (%)		12.0					0.0				

Boreho	ole No.			BH-08					ВН	-09		
Sampl	le No.	D01	UD01	D11	D19	D23	D02	UD01	D08	D13	D18	D24
Dep	oth	1.5	5.35 ~ 5.85	16.5	28.5	34.5	3.0	5.35 ~ 5.85	12.0	19.5	27.0	36.0
Natural Wat	ter Content	-	32.6	32.9	30.2	21.2	22.9	33.5	46.9	39.9	45.7	34.7
Specific	Gravity	-	2.688	2.682	2.687	2.675	2.672	2.625	2.699	2.696	2.701	2.681
Wet Unit	Weight		1.819					1.817				
Dry Unit	Weight		1.372					1.361				
	Liquid	NP	55	45	47	38	38	56	62	57	64	42
Atterberg Limits	Plastic	NP	29	26	27	24	24	29	31	30	31	25
	Plasticity Index	NP	26	19	20	14	14	27	31	27	33	17
	Sand (%)	41.8	29.8	1.7	0.8	33.8	23.8	4.1	1.2	6.3	1.1	0.7
Grain Size Analysis	Silt (%)	58.2	42.4	75.5	71.7	46.9	57.5	61.8	59.5	57.6	61.2	75.9
	Clay (%)	58.2	27.8	22.8	27.5	19.6	18.7	34.1	39.3	36.1	37.7	23.5
Compressi	Strength (kPa)		41.2					70.5				
on Test	Failure (%)		8.5					7.0				

Boreho	ole No.				BH-10			
Samp	le No.	UD01	D10	D15	D17	D23	D26	D30
Dej	oth	5.35 ~ 5.85	15.0	22.5	25.5	34.5	39.0	45.0
Natural Wa	ter Content	29.2	43.2	30.9	-	25.9	22.8	-
Specific	Gravity	2.675	2.695	2.683	-	2.693	2.695	-
Wet Unit	Weight	2.675						
Dry Unit	Weight	1.452						
	Liquid	37	56	43	NP	54	57	NP
Atterberg Limits	Plastic	24	29	25	NP	29	30	NP
	Plasticity Index	13	27	18	NP	25	27	NP
	Sand (%)	14.5	1.1	3.2	87.2	8.3	5.4	75.6
Grain Size Analysis	Silt (%)	65.6	64.8	74.0	12.8	61.0	59.2	24.4
•	Clay (%)	19.8	34.1	22.8	12.8	33.7	35.4	24.4
Compressi	Strength (kPa)	45.4						
on Test	Failure (%)	8.5						

2.5.3.3.2 Conclusion

As a result of soil investigation, it was found that the upper layer was mainly composed of clay. This layer requires attention to shallow foundations. The clay layer has a natural moisture content of 21.5 to 47.6%, plasticity index, plasticity limit and liquid limit of 9.0 to 33.0%, 22.0 to 31.0%, and 31.0 to 64.0%, respectively, specific gravity of 2.665 to 2.705, and compressive strength of 41.2 to 80.3 kPa.

The overall soil quality of the investigation area requires attention to construction and infrastructure, and except for BH-04, the allowable bearing capacity is low, so it should be developed after foundation reinforcement. The allowable bearing capacity was calculated at 1.52m (5.0ft), 3.05m (10ft), and 4.57m (15ft), and the results are as follows.

Table 2-56 Allowable bearing capacity

	3 1 7		Depth	
	Category	1.52m	3.05m	4.57m
	Field SPT	4	6	3
BH-01	Square footing	0.609	0.921	0.542
	Continuous footing	0.482	0.729	0.447
	Field SPT	2	2	5
BH-02	Square footing	0.357	0.404	0.853
	Continuous footing	0.294	0.341	0.694

Final Report Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

	Category	1.52m	Depth 3.05m	4.57m
	Field SPT	-	1	4
BH-03	Square footing	-	0.273	0.721
	Continuous footing	-	0.241	0.594
	Field SPT	50	50	50
BH-04	Square footing	6.974	7.013	7.048
	Continuous footing	5.385	8.422	5.450
	Field SPT	9	10	2
BH-05	Square footing	1.318	1.492	0.424
	Continuous footing	1.032	1.174	0.361
	Field SPT	2	2	1
BH-06	Square footing	0.358	0.395	0.293
	Continuous footing	0.294	0.332	0.261
	Field SPT	3	2	11
BH-07	Square footing	0.495	0.404	1.680
	Continuous footing	0.399	0.341	1.330
	Field SPT	4	2	2
BH-08	Square footing	0.633	0.403	0.438
	Continuous footing	0.506	0.339	0.374
	Field SPT	7	6	6
BH-09	Square footing	1.045	0.956	0.990
	Continuous footing	0.824	0.765	0.800
	Field SPT	4	5	4
BH-10	Square footing	0.623	0.796	0.694
	Continuous footing	0.496	0.637	0.566

2.5.4 Water Quality Survey

2.5.4.1 Introduction

2.5.4.1.1 Object of Water Quality Survey

To investigate the water quality of inflow sewage and use it as basic data for selection of treatment method and analysis of water quality improvement effect.

2.5.4.1.2 Scope of Survey

Category	Water Quality Survey	Remarks
Scope	 Two Wards representing all Wards; Ward No. 02: Jalalabad Ward No. 07: West Sholoshar Discharge Route: Madari Khal, Halda River 	
Period	• Total: two times 1st: May 4, 2023 2nd: May 15, 2023	
Contents of Survey	• Analysis Item: pH, Temperature, BOD ₅ , COD, DO, TSS, TVS, Total Phosphorus, Total Nitrogen	

2.5.4.1.3 Location

Two wards representing all wards were selected in consideration of the following.

- Residential areas of having Apartment buildings
 - Inlet & outlet points of septic tank
 - Faecal sludge samples from one point at Inlet of Septic Tank (top & bottom)
 - Wastewater from surface drains nearby the septic tank

Slum areas

- Faecal Sludge of one sample from top of a single or twin pit Latrine
- The end of the secondary/primary drains
- Canal not contaminated by the discharges from wastewater carrying by surface drains of Apartments or combined primary/secondary
- STP Effluent Discharge Route
 - Kahgria Chara: 3.7km canal from the STP to the east across Chikondandi Mouza to Madari Khal
 - Madari Khal: 2.7km small river flowing from Kahgria Khal through Sluice Gate into Halda River

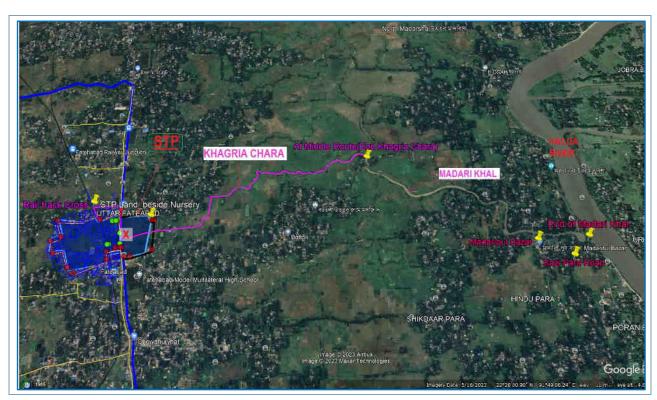


Figure 2-31 STP Effluent Discharge Route

Table 2-57 Location of Water Quality survey

Catagoni	Location	No.	Coordinate			
Category	Location	NO.	N	Е		
	Jalalabad	WQ-1	22.395273	91.812503		
Residential areas of having	Jaiaiabau	WQ-2	22.394686	91.814675		
Apartment buildings	Chalcahahar	WQ-3	22.376186	91.831930		
	Sholoshahar	WQ-4	22.376186	91.831811		
	Jalalabad	WQ-5	22.382617	91.825168		
Slum Areas	Jalalabau	WQ-6	22.381335	91.825660		
Sium Areas	Sholoshahar	WQ-7	22.391889	91.822080		
		WQ-8	22.392286	91.821164		
	Madari Khal	WQ-9	22.453428	91.814960		
Effluent	IVIAUAII KIIAI	WQ-10	22.457998	91.839427		
Discharge Route	Halda Divar	WQ-11	22.449714	91.858922		
	Halda River	WQ-12	22.447997	91.860569		

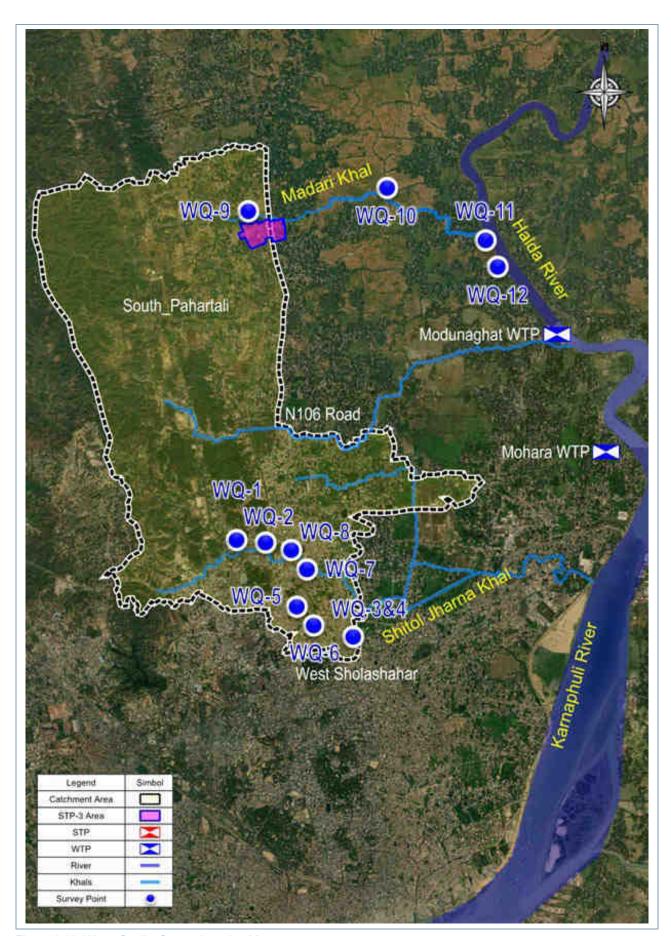


Figure 2-32 Water Quality Survey Location Map

2.5.4.2 Site Survey

2.5.4.2.1 Residential areas of having Apartment buildings

Table 2-58 Photo of Water Quality Survey (Residential areas)

2.5.4.2.2 Slum areas

Table 2-59 Photo of Water Quality Survey (Slum areas)

2.5.4.2.3 Discharge Route

Table 2-60 Photo of Water Quality Survey (Discharge Route)

2.5.4.3 Result of Survey

Samples were collected twice (2 days) at the same point at 10-day intervals. The first was conducted on May 4, 2023, and the second was conducted on May 15, 2023 with an interval of 10 days from the first collection. It rained once during the collection period, and it is judged that the rainy season began from this period.

Table 2-61 Water Quality Survey Result (First)

Temp. pH BOD COD T-P T-N NH3-N TSS VSS DO												
No.	Samples		Temp. °C	рН		mg/L	mg/L	mg/L	мпэ-м mg/L	mg/L	wss mg/L	mg/L
	0 1'			•	mg/L							IIIg/L
WQ -1	Septic tank	Upper	31.25	6.99	512	694	56	198	-	3,541	-	-
	Influent	Bottom	29.00	6.79	1,005	1,381	58	233	-	4,041	-	-
	Septic to	ank Effluent	29.50	6.90	502	739	36	226	-	1,640	-	-
	Faecal	Upper	-	-	495	510	-	-	-	7,074	228.24	-
	Sludge	Bottom	-	-	380	487	-	-	-	8,001	198.16	-
WQ -2	Near	by drain	-	-	118	355	19	-	35.65	2,030	149.72	0.54
	Septic	Upper	29.70	6.98	468	658	51	167	-	3,150	-	-
	tank Influent	Bottom	30.50	6.90	952	1,174	47	201	-	4,330	-	-
WQ -3	Septic to	ank Effluent	30.10	6.85	475	612	37	159	-	1,210	-	-
	Faecal	Upper	-	-	517	654	-	-	-	6,580	380.16	-
	Sludge	Bottom	-	-	480	547	-	-	-	7,720	228.48	-
WQ -4	Near	by drain	-	-	144	425	26	-	155	2,741	103.92	0.10
		Effluent	31.90	7.07	288	490	61	333	-	2,741	-	-
WQ -5	Pit	Rain water	30.80	6.48	107	380	22	21	-	2,654	-	-
	Faecal Sludge		-	-	1,096	1,541	-	-	-	6,330	242.32	-
WQ	Near	Nearby canal		-	278	521	26	-	72.08	1,024	130.16	0.21
-6		m away om Pit	29.80	6.58	156	318	25	-	61.23	1,752	-	0.22
		Effluent	27.20	6.62	275	405	23	65	-	3,554	-	-
WQ -7	Pit	Rain water	27.60	6.71	368	569	27	78	-	3,021	-	-
	Faecal Sludge		-	-	1,425	1,752	-	-	-	7,670	201.20	-
WQ	Nearby canal		-	-	236	455	24	-	28.68	1,400	124.08	0.08
-8	200m away from Pit		28.20	6.80	196	431	22	-	51.15	1,005	-	0.13
WQ -9	Beginning of Kahgria Khal		28.70	6.69	12	25	20	-	61.23	1,287	-	0.56
WQ -10	Beginning of Madari Khal		30.40	6.84	6	14	21	-	41.08	1,765	-	0.53
WQ -11	F	ng of Halda River	30.90	6.81	3	9	19	-	13.95	547	-	5.05
WQ -12			29.40	6.97	5	11	21	-	20.15	407	-	5.84

Table 2-62 Water Quality Survey Result (Second)

Temp. pH BOD COD T-P T-N NH3-N TSS VSS DO												
No.	Samples		°C	р п -	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
WQ -1	Septic tank Influent	Upper	32.4	7.4	624	847	40	142	-	3,041	-	-
		Bottom	30.90	7.52	947	1,178	30	158	-	4,219	-	-
	Septic ta	ank Effluent	31.80	7.52	588	940	36	158	-	1,424	-	-
	Faecal Sludge	Upper	-	-	514	710	-	-	-	6,124	185.84	-
		Bottom	-	-	365	580	-	-	-	6,898	191.36	-
WQ -2	Near	by drain	-	-	136	476	24	-	18.91	1,680	140.92	0.83
	Septic	Upper	30.70	7.3	502	954	38	115	-	2,941	-	-
	tank Influent	Bottom	30.90	7.20	997	1,645	38	126	-	3,458	-	-
WQ -3	Septic to	ank Effluent	31.60	7.41	482	725	27	142	-	1,354	-	-
	Faecal	Upper	-	-	497	578	-	-	-	7,590	365.12	-
	Sludge	Bottom	-	-	505	687	-	-	-	7,110	222.56	-
WQ -4	Nearby drain		-	-	116	912	27	-	26.30	2,354	125.12	0.04
	D''	Effluent	31.1	7.21	197	360	49	318	-	2,540	-	-
WQ -5	Pit	Rain water	31.3	7	112	312	21	35	-	2,014	-	-
	Faecal Sludge		-	-	1,280	1,496	-	-	-	6,160	157.92	-
WQ	Near	Nearby canal		-	174	480	63	-	55.08	985	128.28	0.5
-6		200m away from Pit		7.3	128	235	24	-	44.39	1,247	-	0.05
	Pit	Effluent	31	7.55	201	460	29	82	-	2,741	-	-
WQ -7		Rain water	30.8	7.33	274	480	26	64	-	2,941	-	-
	Faecal Sludge		-	-	1,451	1,980	-	-	-	6,870	270.84	-
WQ -8	Nearby canal		-	-	140	286	20	-	41.10	1,750	123.28	0.03
	200m away from Pit		31.8	7.2	172	350	21	-	30.42	874	-	0.6
WQ -9	Beginning of Kahgria Khal		30.9	6.2	40	56	17	-	4.11	1,474	-	3.67
WQ -10	Beginning of Madari Khal		31.4	7.88	20	110	20	-	5.75	1,058	-	7.81
WQ -11	Beginnir	ng of Halda River	31.7	7.6	11	26	18	-	4.11	421	-	7
WQ -12	Bank of		31.4	7.6	54	85	21	-	7.4	380	-	7.47

Table 2-63 Result Graph (Residential area)

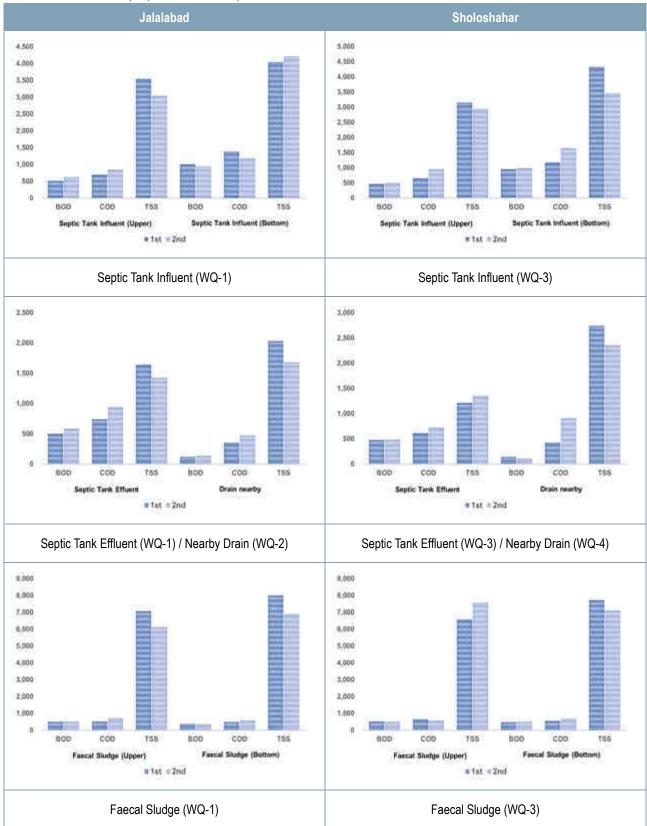
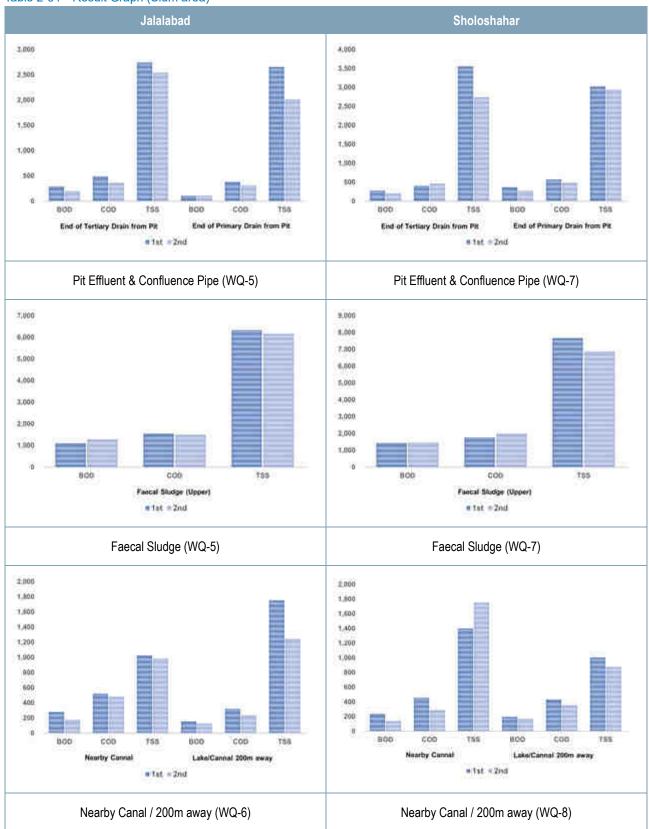



Table 2-64 Result Graph (Slum area)

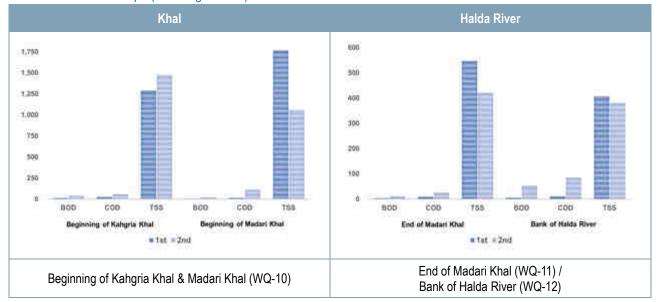


Table 2-65 Result Graph (Discharge Route)

2.5.4.4 Conclusion and Recommendations

Since the water quality survey of this project was conducted twice at 10days intervals, it is judged to be difficult to define the water quality characteristics of the dry season and the rainy season. In future detailed design, it is necessary to select and implement a water quality survey period to have seasonal representativeness.

2.5.4.4.1 Residential areas

Analysis of septic tank sample results was performed on samples taken from the upper part. Samples from the bottom of the septic tank are inaccurate due to improper maintenance over a long period of time. BOD 468~624mg/L and COD 612~940mg/L were very high. The TSS was 1,210~3,541mg/L, which was about 68.1~89.1% higher than the influent wastewater quality of 386mg/L.

When the faecal sludge in the septic tank reaches a certain level, cleaning and sludge removal should be carried out. However, it is judged that the water quality is high because the maintenance of the septic tank is not properly performed in the project area.

2.5.4.4.2 Slum areas

As a result of water quality survey in the slum area, BOD 107~368mg/L and COD 286~569mg/L were found to be within the range of the sewage influent. However, in the case of Sholoshahar, T-N was 318~333mg/L, and the water quality was high because the maintenance of the septic tank in the public toilet was not properly maintained.

2.5.4.4.3 Effluent Discharge Route

The Effluent discharge route of this project is the Halda River discharge through Madari Khal. Water quality was investigated at the discharge point, the Madari Khal, the Halda River inlet, and the river bank. BOD 3~54mg/L, COD 9~85mg/L were analyzed lower than influent. This is considered to be low due to the dilution effect caused by rainwater as the survey was conducted in the rainy season, and TSS is judged to have increased to 380~1,765mg/L due to surface drainage and inflow of impurities.

2.5.5 Household Connection Survey

2.5.5.1 Introduction

2.5.5.1.1 Scope of survey

Household connection survey is conducted in the feasibility study for randomly selected 100 houses to categorize the household connection types as per the buildings in the project area for the project cost estimation. Detail household connection survey shall be implemented in the detailed design stage.

Table 2-66 Sample survey result

Category	Building Type	Survey Results	Plan of This Project
Type 1	Residential Building with 8 or more floors	13	1,200
Type 2	Residential Building with 2-7 storey	63	6,000
Type 3	Residential Building with single story	11	2,000
Type 4	Commercial Building	13	800
Total		100	10,000

2.5.5.1.2 Location

Among the 7 Wards in the Catchment-3 area, 3 Wards with representativeness were selected.

Table 2-67 Selection of Wards of Catchment-03 for Household Connection Survey

No.	Ward	Existing Water Service Coverage	Selection	Number of Sampling Point
1	South Pahartali			
2	Jalalabad	0%	✓	18
3	Panchlaish	38%	✓	42
4	Chandgaon	68%		
5	West Sholashahar	100%	✓	40
6	Sulakbahar	75%		
7	North Pahartali	100%		
		100%		100

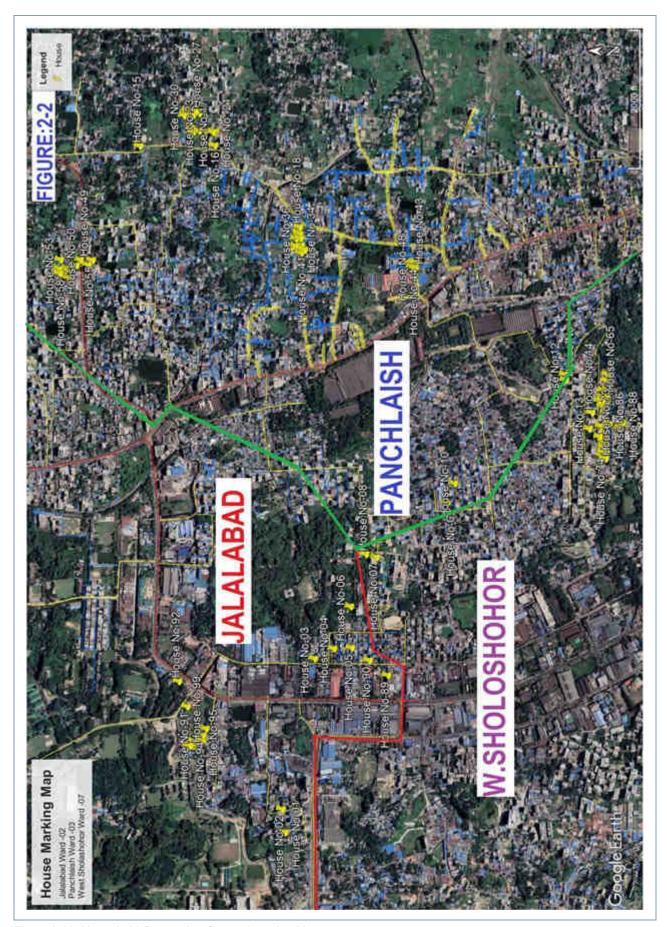


Figure 2-33 Household Connection Survey Location Map

Site Survey 2.5.5.2

Table 2-68 Photo of Household Connection Survey

Table 2-69 Photo of Household Connection Survey

2.5.5.3 Result of Survey

The sample survey was executed on 100 locations. Type 2 as 63% and the other three types are combinedly only represents only 37%. As such, the findings might not represent the real situation. Therefore, Detail household connection survey shall be implemented in the detailed design stage.

Table 2-70 Result of sample survey

	Source of	Ward	House	Nos	S			onfiguratio		Septic Tank	Emp	
No	Water	No.	Type (Floor)	of ppl.	Grey Water	Black Water	Rain Water	Grey + Black	Grey + Rain	Size	Manual	With CCC
1	DTW	02	5th	62	Yes	Yes	Yes			7.0 x 3.5 x 3.0		Yes
2	DTW	02	7th	85	Yes	Yes	Yes			7.0 x 4.0 x 3.0		Yes
3	CWASA	02	7th	55		Yes			Yes	6.0 x 4.0 x 3.0		Yes
4	CWASA	02	5th	35		Yes			Yes	5.5 x 3.5 x 3.0		Yes
5	CWASA+ DTW	02	6th	35		Yes			Yes	7.0 x 3.0 x 3.0		Yes
6	CWASA + DTW	02	6th	120	Yes	Yes	Yes			8.0 x 4.0 x 3.0		Yes
7	DTW	07	8th	75		Yes			Yes	7.5 x 4.5 x 3.0		Yes
8	DTW	07	8th	60	Yes	Yes	Yes			8.0 x 4.0 x 3.0	No	No
9	DTW	07	7th	100	Yes	Yes	Yes			5.5 x 4.5 x 3.0	No	Yes
10	DTW	07	5th	65	Yes	Yes	Yes			5.0 x 4.0 x 3.0	No	Yes
11	CWASA + DTW	07	9th	110	Yes	Yes	Yes			7.0 x 5.0 x 3.0	No	Yes
12	DTW	03	9th	80	Yes	Yes	Yes			7.0 x 5.0 x 3.0	No	Yes
13	DTW	07	9th	80	Yes	Yes	Yes			6.0 x 4.5 x 3.0		Yes
14	CWASA + DTW	07	9th	130	Yes	Yes	Yes			7.0 x 5.0 x 3.0	No	No
15	CWASA + DTW	03	5th	120		Yes			Yes	8.0 x 5.0 x 3.0	Yes	
16	CWASA + DTW	03	5th	120		Yes			Yes	8.0 x 5.0 x 3.0	Yes	
17	CWASA	03	5th	75	Yes	Yes	Yes			3.0 x 2.0 x 1.2		No
18	CWASA	03	1st	12	Yes	Yes	Yes			5.0 x 2.5 x 1.5		No
19	CWASA + DTW	03	Commerc ial	370	Yes	Yes	Yes			6.5 x 2.5 x 3.0		Yes
20	CWASA	03	9th	130	Yes	Yes	Yes			3.5 x 3.0 x 2.5		No
21	DTW	03	Commerc ial	110	Yes	Yes	Yes			2.0 x 2.0 x 1.2		Yes
22	CWASA	03	3rd	30	Yes	Yes	Yes			2.0 x 2.5 x 1.5		No
23	CWASA	03	4th	35	Yes	Yes	Yes			4.0 x 2.0 x 1.5		No

	Source of	Ward	House	Nos	S	anitary Plo	umbing Co	onfiguratio	on	Septic Tank	Emp	ying
No	Water	No.	Type (Floor)	of ppl.	Grey Water	Black Water	Rain Water	Grey + Black	Grey + Rain	Size	Manual	With CCC
24	CWASA	03	1st	12		Yes			Yes			No
25	CWASA	03	1st	20		Yes			Yes	3.0 x 2.0 x 1.5		No
26	CWASA	03	2nd	30	Yes	Yes	Yes			3.0 x 2.0 x 1.5		No
27	CWASA	03	4th	69		Yes			Yes	3.0 x 2.0 x 1.5		No
28	CWASA	03	3rd	42	Yes	Yes	Yes			6.0 x 3.0 x 2.0		No
29	DTW	03	1st	22	Yes	Yes	Yes			3.0 x 2.0 x 1.2		No
30	CWASA	03	5th	45		Yes			Yes	5.0 x 3.5 x 2.0		No
31	DTW	03	3rd	50	Yes	Yes	Yes			7.0 x 2.5 x 2.5		No
32	CWASA	03	1st	10		Yes			Yes			Yes
33	CWASA	03	1st	10		Yes			Yes		Yes	
34	CWASA	03	2nd	30	Yes	Yes	Yes			3.0 x 2.0 x 1.5	Yes	
35	CWASA	03	3rd	25		Yes			Yes	3.0 x 2.0 x 1.5	Yes	
36	CWASA + DTW	03	3rd	30		Yes			Yes	2.0 x 2.0 x 1.2		No
37	CWASA	03	1st	7	Yes	Yes	Yes			5.0 x 2.8 x 1.8	Yes	
38	CWASA	03	3rd	25	Yes	Yes	Yes			3.0 x 2.0 x 1.2	Yes	
39	CWASA	03	4th	50	Yes	Yes	Yes			3.0 x 2.0 x 1.5		No
40	CWASA + DTW	03	1st	15	Yes	Yes	Yes			5.0 x 3.0 x 1.8		No
41	CWASA + DTW	03	5th	50		Yes			Yes	3.5 x 2.0 x 1.5	Yes	
42	CWASA	03	6th	70	Yes	Yes	Yes			4.0 x 3.0 x 2.0		No
43	CWASA	03	8th	140		Yes			Yes	6.5 x 3.0 x 2.5		No
44	CWASA + DTW	03	5th	90		Yes			Yes	6.0 x 4.0 x 2.0	Yes	
45	CWASA	03	4th	50	Yes	Yes	Yes			6.0 x 2.0 x 2.0		No
46	CWASA	03	6th	100	Yes	Yes	Yes			3.0 x 3.0 x 2.0		No
47	CWASA	03	5th	130	Yes	Yes	Yes			4.0 x 3.0 x 1.5		No
48	CWASA + DTW	03	6th	70	Yes	Yes	Yes			5.0 x 3.0 x 2.0		No
49	CWASA	03	6th	110		Yes			Yes	5.0 x 3.0 x 3.0	Yes	
50	CWASA	03	Commerc ial	60		Yes			Yes	4.0 x 3.0 x 2.5		No

	Source of	Ward	House	Nos				onfiguration		Septic Tank	Emp	
No	Water	No.	Type (Floor)	of ppl.	Grey Water	Black Water	Rain Water	Grey + Black	Grey + Rain	Size	Manual	With CCC
51	CWASA + DTW	03	7th	110	Yes	Yes	Yes			4.0 x 3.0 x 2.5		No
52	CWASA	03	3rd	40	Yes	Yes	Yes			6.0 x 3.0 x 2.5		Yes
53	DTL	03	6th	100	Yes	Yes	Yes			4.0 x 3.0 x 2.5		No
54	CWASA	03	2nd	25		Yes			Yes	2.5 x 2.0 x 1.5		No
55	CWASA	03	Commerc ial	150		Yes				4.0 x 3.0 x 1.5		No
56	CWASA	03	8th	120	Yes	Yes	Yes			6.0 x 3.0 x 3.0		No
57	CWASA	03	4th	50	Yes	Yes	Yes			4.0 x 2.0 x 1.2	Yes	
58	CWASA + DTW	03	5th	70	Yes	Yes	Yes			4.0 x 3.0 x 2.5		No
59	DTL	07	9th	100	Yes	Yes	Yes			4.5 x 4.0 x 3.0		No
60	CWASA	07	5th	110	Yes	Yes	Yes			5.0 x 2.5 x 3.0		Yes
61	DTW	07	5th	60	Yes	Yes	Yes			3.0 x 2.5 x 2.5		No
62	DTW	07	4th	40	Yes	Yes	Yes			3.0 x 3.0 x 2.5		No
63	DTW	07	4th	60		Yes			Yes	3.0 x 2.5 x 2.5		Yes
64	DTW	07	4th	50	Yes	Yes	Yes			6.0 x 3.0 x 3.0		Yes
65	DTW	07	6th	70		Yes			Yes	6.0 x 4.0 x 3.0		Yes
66	DTW	07	5th	70	Yes	Yes	Yes			8.0 x 5.0 x 4.0		No
67	DTW	07	2nd	40	Yes	Yes	Yes			5.0 x 3.5 x 3.0		No
68	CWASA + DTW	07	2nd	30	Yes	Yes	Yes			4.0 x 2.5 x 2.5		Yes
69	CWASA + DTW	07	2nd	20	Yes	Yes	Yes			4.0 x 2.5 x 2.5		Yes
70	DTW	07	9th	120		Yes			Yes	5.0 x 4.0 x 3.0		No
71	CWASA + DTW	07	5th	90	Yes	Yes	Yes			6.0 x 4.0 x 3.0		Yes
72	CWASA + DTW	07	5th	100		Yes			Yes	6.0 x 4.0 x 3.0		Yes
73	DTW	07	5th	60	Yes	Yes	Yes			4.0 x 3.0 x 2.5		No
74	CWASA	07	3rd	40	Yes	Yes	Yes			6.0 x 2.5 x 3.0	Yes	
75	CWASA + DTW	07	3rd	30	Yes	Yes	Yes			3 x (5.0 x 2.5 x 2.5)		No
76	DTW	07	9th	140	Yes	Yes	Yes			9.0 x 3.0 x 3.0		No
77	DTW	07	5th	120		Yes			Yes	4.0 x 3.0 x 3.0	Yes	

	Source of	Ward	House	Nos	S	anitary Plu	umbing Co	onfiguration	on	Septic Tank	Emp	tying
No	Water	No.	Type (Floor)	of ppl.	Grey Water	Black Water	Rain Water	Grey + Black	Grey + Rain	Size	Manual	With CCC
78	DTW	07	9th	140	Yes	Yes	Yes			4.0 x 3.0 x 3.0		No
79	DTW	07	4th	60		Yes			Yes	4.0 x 3.5 x 3.0		No
80	DTW	07	5th	50	Yes	Yes	Yes			5.0 x 4.0 x 3.0		No
81	CWASA + DTW	07	3rd	60	Yes	Yes	Yes			6.0 x 4.0 x 3.0		No
82	DTW	07	10th	120	Yes	Yes	Yes			5.0 x 3.0 x 3.0		No
83	DTW	07	9th	150	Yes	Yes	Yes			8.0 x 9.0 x 3.0		No
84	DTW	07	4th	40		Yes			Yes	4.0 x 3.0 x 2.5	Yes	
85	DTW	07	10th	300		Yes			Yes	10.0 x 4.0 x 3.0	Yes	
86	CWASA + DTW	07	3rd	40	Yes	Yes	Yes			4.0 x 2.5 x 2.5	Yes	
87	DTW	07	9th	300	Yes	Yes	Yes			6.5 x 4.0 x 3.0		No
88	DTW	07	5th	50		Yes			Yes	4.0 x 3.0 x 3.0		No
89	CWASA + DTW	02	Commerc ial	3000	Yes	Yes	Yes			8.0 x 12.0 x 4.0 6.5 x 7.0 x 4.0		Yes
90	CWASA	02	Commerc ial	171	Yes	Yes	Yes			2.0 x 1.5 x 1.8		Yes
91	CWASA + DTW	02	Commerc ial	400	Yes	Yes	Yes			4.0 x 6.0 x 3.0		Yes
92	CWASA	02	Commerc ial	30		Yes				3.0 x 3.0 x 2.5		No
93	CWASA	02	Commerc ial	250	Yes	Yes	Yes			8.0 x 4.0 x 2.5	Yes	
94	CWASA	02	Commerc ial	150	Yes	Yes	Yes			6.5 x 4.0 x 3.0		No
95	CWASA + DTW	02	Commerc ial	42		Yes				1.5 x 1.5 x 1.5		Yes
96	CWASA	02	Commerc ial	160	Yes	Yes	Yes			4.0 x 1.5 x 1.5	Yes	
97	DTW	02	Commerc ial	220	Yes	Yes	Yes			4.0 x 2.5 x 3.0	Yes	
98	CWASA + DTW	02	3rd	40		Yes			Yes	4.0 x 2.5 x 3.0	Yes	
99	CWASA	02	3rd	50		Yes			Yes	4.0 x 2.5 x 2.5	Yes	
100	CWASA	02	3rd	50	Yes	Yes	Yes			4.0 x 2.5 x 2.5	Yes	

2.6 Review of Similar Project

2.6.1 Sewerage Projects of Project Area

2.6.1.1 Chattogram Sewage System Construction (Catchment 1) Project

The Chattogram Sewerage System Construction (Catchment 1) Project is under construction in 2022 with financial resources from Bangladesh. Corresponding to the Catchment-1 area, the location of the sewage treatment facility under construction is located near the Bay of Bengal.

This project is under construction after receiving an order from Taeyoung Construction, a Korean company. The construction period is scheduled for about 4 years, and the project status is as follows.

Table 2-71 Chattogram Sewage System Construction (Catchment 1) Project Status

Site	STP	Capacity	Sanitary Sewer	Finance	Construction Company	Bidding Method
Catchment -1	STP -1	100,000 m ³ /d	D225 ~ 2,100mm L = 112,587m	GOB	Taeyoung	Design Build

The first stage of sewage treatment plant Q=100,000m³/d construct, and the final capacity was planned to be Q=300,000m³/d by collecting sewage from Catchment-3 & 5 sewage treatment areas in the future. The detailed plan is as follows;

Figure 2-34 Layout Plan of Sewage Treatment Plant

Table 2-72 Introduction of Sewage Facility on Chattogram Sewage System Construction (Catchment 1)

Catagory	Риссе	Capacity (m³/d)					
Category	Process	Final	Catchment 1	Catchment 2	Catchment 3		
Facility	A20	300,000	100,000	100,000	100,000		
	Inlet Pump → Screen → Primary Sedimentation → Biological Reactor →						
Process	Secondary Sedimentation → Disinfection → Discharge						
Future Facility: Utilization of bio gas after concentration and digestion							

^{*}MLE Process: Advanced sewage treatment method composed of a combination of an anoxic tank and an aerobic tank to treat nitrogen biologically

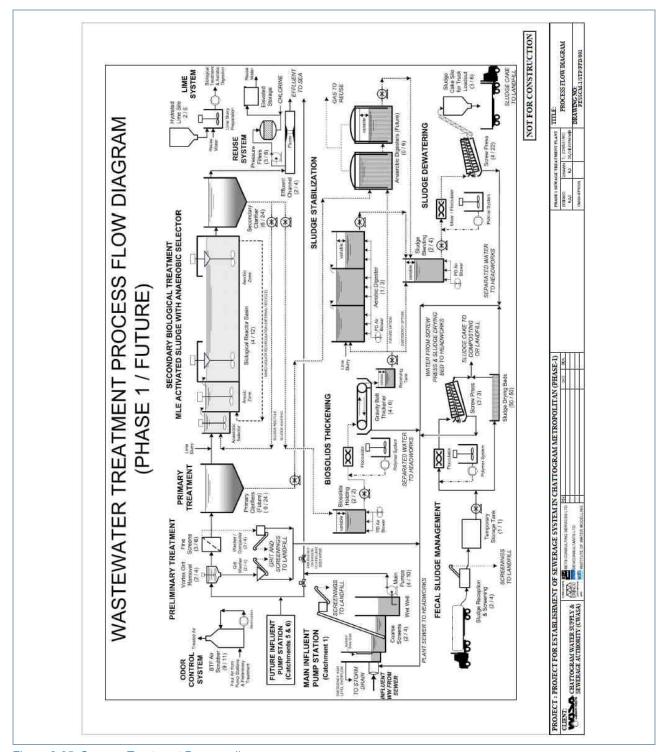


Figure 2-35 Sewage Treatment Process diagram

2.6.1.2 Chattogram Sewage System Construction (Catchment 5) Project

The Chattogram Sewerage System Construction Project (North Kattoli Catchment 5) is undergoing a feasibility study in 2022 with French AFD funding. It corresponds to the Catchment-5 area, and the sewage treatment facility was planned to be integrated and installed as STP-1.

Table 2-73 Chattogram Sewage System Construction (Catchment 5) Project Status

Site	STP	Capacity (m ² /d)	Sanitary Sewer	Finance	Remarks
Catchment – 5	STP -1	1 st : 60,000 2 nd : 100,000	D200 ~ 1,400mm L = 97,560m	AFD	

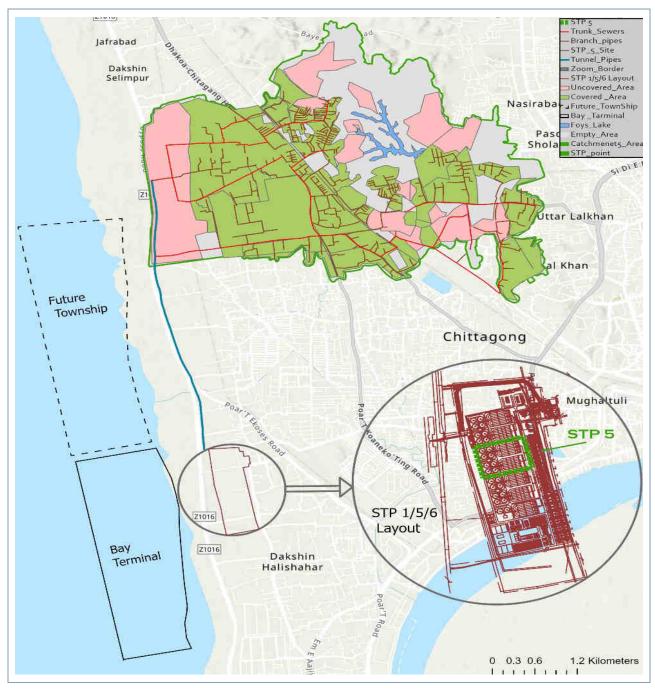


Figure 2-36 Layout Plan of Sewage Treatment area (Catchment 5)

2.6.1.3 Chattogram Sewage System Construction (Catchment 2&4) Project

The Chattogram Sewerage System Construction Project (North Kattoli Catchment 2&4) is undergoing a feasibility study in 2022 with Japan JICA funding. It corresponds to the Catchment-2&4 area, and the location of the sewage treatment plant was planned to be integrated and installed downstream of the Halda River.

Table 2-74 Chattogram Sewage System Construction (Catchment 2&4) Project Status

Site	STP	Capacity(m ² /d)	Sanitary Sewer	Finance	Remarks
Catchment – 2&4	STP -2&4	1 st : 60,000 2 nd : 300,000	D200 ~ 2,400mm L = 227,500m	JICA	

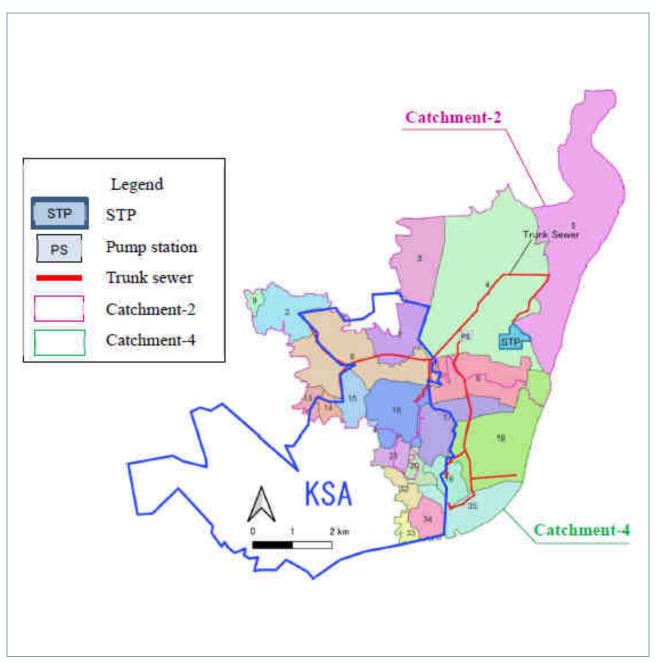


Figure 2-37 Layout Plan of Sewage Treatment area (Catchment 2&4)

Table 2-75 Introduction of Chattogram STP (Catchment 2&4)

Cotogory	Drococo	Capacity (m³/d)						
Category	Process	Final	Catchment 1	Catchment 2	Catchment 3			
Facility	A2O	300,000	60,000	180,000	300,000			
Process	Inlet Pun	•	rimary Sedimentation tation → Disinfection	•	· →			

^{*}Activated Sludge Process: A general method of sewage treatment that stabilizes active microorganisms and sewage in a reaction tank

^{*}A2O: Advanced sewage treatment method that induces nitrate nitrogen removal and phosphorus release by configuring the reaction tank as an anaerobic tank, anoxic tank, and aerobic tank

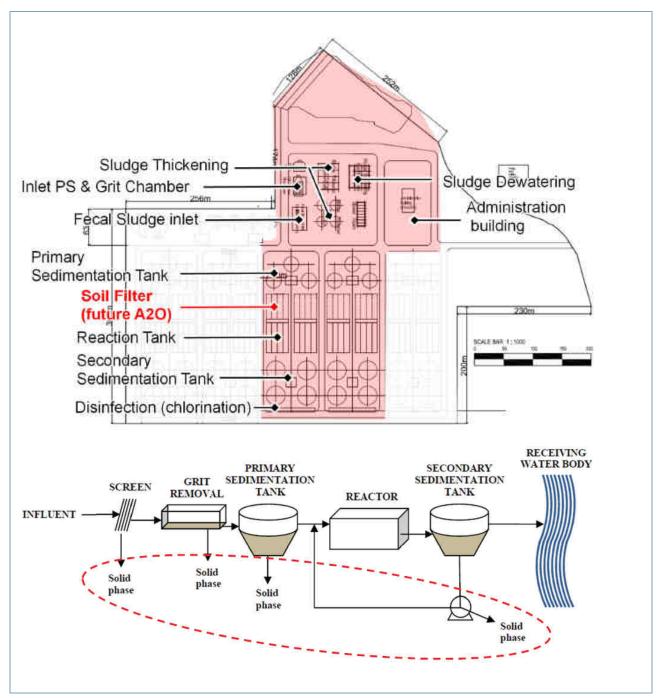


Figure 2-38 Sewage treatment facility layout and treatment process

2.6.2 EDCF Projects

According to the Export-Import Bank of Korea, the total amount of EDCF approved loans for 30 projects in Bangladesh since 2000 is USD 1,710 million, which is approximately KRW 2,169.2 billion. Among them, in the water supply and sewerage sector, there is one water supply project in Dhaka and one water supply project in Chattogram, and CWASA has sufficient capacity to carry out EDCF projects.

Table 2-76 EDCF Similar Project in Bangladesh

No.	Project	Cost (million won)	Year of approval
1	Dhaka Water Supply development project	46,906	2011
2	Bhandal Jhuri Water Supply development project	179,649	2014 & 2021
Total		226,555	

3 Planning Framework

3.1 Target Year

Planning framework is a very important step in establishing a plan for the expansion of sewerage system by carefully estimating the future population, Sewage Service areas, and wastewater generation. Furthermore, appropriate capacity of facilities should be determined to prevent over-investment or insufficient capacity of facilities due to over-planning or under-planning.

Since the target year of the sewerage system is the basis of social infrastructure, it is common to establish the target year as 20 years later in consideration of the lifetime of the facility, difficulty of facility expansion. The final target year should be set from a long-term perspective, taking into account the influent quantity of wastewater to STP, project feasibility in the consideration of investment cost.

In this study, year 2022 is set as the base year in the consideration of Bangladesh population & housing census 2022 (BBS) and year 2070 is set as the final target year considering the Sanitation & Drainage Improvement Strategy and Master Plan for the City of Chattogram prepared under CWSISP (2017), other on-going sewerage projects in Chattogram. Mid-term target year is divided into three Phases of 15 years from the base year for the project implementation considering the initial investment cost and O&M status of sewerage system.

Table 3-1 Target Year

Category	Base	Phase 1	Phase 2	Phase 3
Implementation Period	2022	2023-2040	2041-2055	2056-2070
Target Year	2022	2040	2055	2070

3.2 Population Projection

Population projection is an important factor that is the basis for wastewater generation estimation in the consideration of water supply service coverage, Sewage Service coverage, urban development plan and long-term plan of the project area.

The calculation of the projected population should be established by grasping the past population trends and by taking into account the complex and diverse variables such as natural population growth and social population growth trends according to the urban development plan.

In this study, the future population is projected by comprehensively reviewing the factors of population increase and decrease considering the regional characteristics of the project area and future growth potential after comparing and analyzing the related planned population.

3.2.1 Current Population

The project area of this study is the Chattogram City (CCC) and surrounding areas of CCC such as Hathazari Upazila Paurashava and Raozan Upazila Paurashava.

Based on the 2022 census, the population of Chattogram City is 3,230,517, the population of Hathazari is 94,244, and the population of Raozan is 70,701 with an annual average increase of 2.02% in Chattogram, 3.79% in Hathazari and 1.64% in Raozan.

The population trend of the project area is as below.

Table 3-2 Population Trend of the Project Area

Category	Population Census 2011	Population Census 2022	Annual Average Growth Rate (%)	Remarks
Chattogram City (CCC)	2,592,439	3,230,517	2.02	
Hathazari Upazila Paurashava	62,588	94,244	3.79	
Raozan Upazila Paurashava	59,148	70,701	1.64	
Total	2,714,175	3,395,462	2.06	

Source: Population & Housing Census 2011 & 2022

Table 3-3 Population Trend of the Project Area by Ward

	21,260 5 18,146 7 15,302 9 21,161 9 26,537 8 60,946 8 27,759
Ward Growth Rate (%) CCC 1 South Pahartali 23.1 9.6 39,247 61,679 4.20 4,08 2 Jalalabad 14.8 7.7 103,314 163,705 4.27 13,41 3 Panchlaish 5.6 5.6 68,794 101,615 3.61 12,28 4 Chandgaon 10.7 10.3 107,807 157,612 3.51 10,46 5 Mohara 10.2 5.1 86,491 107,920 2.03 16,95 6 East Sholashahar 2.4 2.4 62,113 63,689 0.23 25,88 7 West Sholashahar 3.2 2.7 125,517 164,553 2.49 46,48 8 Sulakbahar 5.3 5.1 138,200 141,570 0.22 27,09	2022 8 6,425 7 21,260 6 18,146 7 15,302 9 21,161 9 26,537 8 60,946 8 27,759
CCC 1 South Pahartali 23.1 9.6 39,247 61,679 4.20 4,08 2 Jalalabad 14.8 7.7 103,314 163,705 4.27 13,41 3 Panchlaish 5.6 5.6 68,794 101,615 3.61 12,28 4 Chandgaon 10.7 10.3 107,807 157,612 3.51 10,46 5 Mohara 10.2 5.1 86,491 107,920 2.03 16,95 6 East Sholashahar 2.4 2.4 62,113 63,689 0.23 25,88 7 West Sholashahar 3.2 2.7 125,517 164,553 2.49 46,48 8 Sulakbahar 5.3 5.1 138,200 141,570 0.22 27,09	6,425 21,260 18,146 15,302 21,161 26,537 60,946 8 27,759
2 Jalalabad 14.8 7.7 103,314 163,705 4.27 13,41 3 Panchlaish 5.6 5.6 68,794 101,615 3.61 12,28 4 Chandgaon 10.7 10.3 107,807 157,612 3.51 10,46 5 Mohara 10.2 5.1 86,491 107,920 2.03 16,95 6 East Sholashahar 2.4 2.4 62,113 63,689 0.23 25,88 7 West Sholashahar 3.2 2.7 125,517 164,553 2.49 46,48 8 Sulakbahar 5.3 5.1 138,200 141,570 0.22 27,09	21,260 5 18,146 7 15,302 9 21,161 9 26,537 8 60,946 8 27,759
3 Panchlaish 5.6 5.6 68,794 101,615 3.61 12,28 4 Chandgaon 10.7 10.3 107,807 157,612 3.51 10,46 5 Mohara 10.2 5.1 86,491 107,920 2.03 16,95 6 East Sholashahar 2.4 2.4 62,113 63,689 0.23 25,88 7 West Sholashahar 3.2 2.7 125,517 164,553 2.49 46,48 8 Sulakbahar 5.3 5.1 138,200 141,570 0.22 27,09	18,146 15,302 21,161 26,537 3 60,946 3 27,759
4 Chandgaon 10.7 10.3 107,807 157,612 3.51 10,46 5 Mohara 10.2 5.1 86,491 107,920 2.03 16,95 6 East Sholashahar 2.4 2.4 62,113 63,689 0.23 25,88 7 West Sholashahar 3.2 2.7 125,517 164,553 2.49 46,48 8 Sulakbahar 5.3 5.1 138,200 141,570 0.22 27,09	15,302 21,161 26,537 60,946 27,759
5 Mohara 10.2 5.1 86,491 107,920 2.03 16,95 6 East Sholashahar 2.4 2.4 62,113 63,689 0.23 25,88 7 West Sholashahar 3.2 2.7 125,517 164,553 2.49 46,48 8 Sulakbahar 5.3 5.1 138,200 141,570 0.22 27,09	21,161 26,537 3 60,946 27,759
6 East Sholashahar 2.4 2.4 62,113 63,689 0.23 25,88 7 West Sholashahar 3.2 2.7 125,517 164,553 2.49 46,48 8 Sulakbahar 5.3 5.1 138,200 141,570 0.22 27,09	26,537 60,946 27,759
7 West Sholashahar 3.2 2.7 125,517 164,553 2.49 46,48 8 Sulakbahar 5.3 5.1 138,200 141,570 0.22 27,09	60,946 3 27,759
7 West Sholashahar 3.2 2.7 125,517 164,553 2.49 46,48 8 Sulakbahar 5.3 5.1 138,200 141,570 0.22 27,09	27,759
8 Sulakbahar 5.3 5.1 138,200 141,570 0.22 27,09	
0.4 2.0 104,010 2.04 03,10	52,158
10 North Kattali 4.9 3.7 41,685 61,802 3.64 11,26	16,703
11 South Kattali 3.0 3.0 75,316 109,825 3.49 25,10	36,608
12 Saraipara 2.4 2.4 73,636 86,820 1.51 30,68	36,175
13 Pahartali 3.3 2.5 80,390 89,594 0.99 32,15	35,838
14 Lalkhan Bazaar 1.2 0.9 75,335 69,617 -0.72 83,70	77,352
15 Bagmoniram 2.1 1.4 51,603 49,166 -0.44 36,85	35,119
16 Chawk Bazar 2.0 2.0 49,065 56,342 1.27 24,53	28,171
17 West Bakalia 1.9 1.9 97,145 111,193 1.24 51,12	58,523
18 East Bakalia 5.1 3.9 65,869 76,046 1.31 16,88	19,499
19 South Bakalia 0.8 0.8 76,302 55,893 -2.79 95,37	69,866
20 Dewan Bazar 0.4 0.4 32,633 34,982 0.63 81,58	87,455
21 Jamalkhan 0.8 0.8 40,014 45,944 1.26 50,01	57,430
22 Enayet Bazar 0.8 0.6 35,454 33,965 -0.39 59,09	56,608
23 North Pathantooly 0.6 0.6 31,175 35,412 1.17 51,95	59,020
24 North Agrabad 2.6 2.6 126,759 152,331 1.68 48,75	58,589
25 Rampur 1.5 1.5 50,366 68,299 2.81 33,57	45,533
26 North Halishahar 5.9 3.2 52,999 67,948 2.28 16,56	21,234
27 South Agrabad 1.4 1.4 66,755 58,052 -1.26 47,68	41,466
28 Pathantooly 1.4 1.1 50,410 50,816 0.07 45,82	46,196
29 West Madarbari 0.8 0.6 44,348 36,805 -1.68 73,91	61,342
30 East Madarbari 1.1 0.9 45,928 40,949 -1.04 51,03	
31 Alkaran 0.8 0.3 17,857 15,106 -1.51 59,52	50,353
32 Andarkilla 0.8 0.6 24,423 30,290 1.98 40,70	50,483
33 Firingee Bazaar 0.6 0.4 26,620 28,390 0.59 66,55	70,975
34 Patharghata 0.9 0.8 34,835 32,814 -0.54 43,54	41,018
35 Boxirhat 2.6 0.6 30,855 30,088 -0.23 51,42	50,147
36 Gosaildenga 2.0 0.9 43,929 44,008 0.02 48,81	48,898
37 North Middle Halishahar 3.3 1.3 41,998 51,620 1.89 32,30	39,708
38 South Middle Halishahar 4.8 3.3 59,990 119,404 6.46 18,17	36,183
39 South Halishahar 6.6 2.5 106,272 256,168 8.33 42,50	102,467
40 North Patenga 10.5 3.8 88,593 97,015 0.83 23,31	25,530
41 South Patenga 14.3 1.6 44,084 67,154 3.90 27,55	41,971
Sub-Total 172.9 102.8 2,592,439 3,230,517 2.02 25,21	31,425
Hathazari Upazila Paurashava 14.7 4.4 62,588 94,244 3.79 14,24	21,443
Raozan Upazila Paurashava 27.2 8.1 59,148 70,701 1.64 7,26	8,680
Total 2,714,175 3,395,462 2.06	

Source: Population & Housing Census 2011 & 2022

3.2.2 Population Projection

3.2.2.1 Methodology of Population Projection

The population projection of the target year should be a reliable because it is an important factor for estimating wastewater generation. In principle, social population growth factors include complex and diverse variable factors such as past population growth trends and the urban development plan of the project area should be identified.

In Bangladesh, the population census is conducted every 10 years, so it is difficult to apply the statistical method considering past population changes commonly applied in developed countries such as Korea due to the lack of past population data.

In the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage project such as Catchment-1 (PESSCM-1) and Catchment 2&4, the population projection is calculated every five years by considering the population growth rate by population density per Ward. This method reflects the decrease in the acceptable population due to the limits of future development of land and housing when population density increases, and it is considered to be appropriate when applied to areas where the population is rapidly increasing such as Chattogram City.

Table 3-4 Annual Average Growth Rate by Population Density

Table 0 1	<u> </u>						
No.	Population Dens	sity (person/km²)	Annual Average Growth	Remarks			
NO.	From	То	Rate (%)	Remarks			
1	0	5,000	4.60				
2	5,000	10,000	3.90				
3	10,000	20,000	3.10				
4	20,000	30,000	2.50				
5	30,000	40,000	2.05				
6	40,000	50,000	1.70				
7	50,000	60,000	1.40				
8	60,000	70,000	1.15				
9	70,000	80,000	0.95				
10	80,000	90,000	0.75				
11	90,000	100,000	0.60				
12	100,000	110,000	0.45				
13	110,000	120,000	0.35				
14	120,000	130,000	0.30				

Source: Final Design Report of Catchment-1 (PESSCM-1)

3.2.2.2 Population Projection

In this study, population projection of each ward is estimated in the consideration of Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage projects of Chattogram City.

- In the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP), population project is estimated to the target year 2030 in the consideration of the growth rate by population density based on population census 2011.
- In the on-going sewerage project such as Catchment-1 (PESSCM-1), population project is estimated to the target year 2070 in the consideration of the growth rate by population density based on population census 2011.

In this study, population projection is estimated to the target year 2070 in the consideration of the growth rate by population density based on the recent issued population census 2022 (BBS). Even though there are some differences from the planned population calculated based on the census 2011 of relevant plans, we can consider it is reasonable considering the urbanization of each Ward over the past 10 years (2011-2022).

Table 3-5 Population Projection (person)

Category		2011	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)
Relevant	CWSISP	2,592,439	3,111,125	3,730,950	-	-	-
Plans	Catchment-1 (PESSCM-1)	2,592,439	3,111,125	3,730,950	4,590,965	5,957,652	7,347,895
	Chattogram City (CCC)	2,592,439	3,230,517	3,755,306	4,457,012	5,559,369	6,677,219
This Study	Hathazari Upazila Paurashava	62,588	94,244	114,827	146,988	195,892	248,552
(Catchment-3)	Raozan Upazila Paurashava	59,148	70,701	96,018	130,299	200,054	283,433
	Total	2,714,175	3,395,462	3,966,151	4,734,299	5,955,315	7,209,204

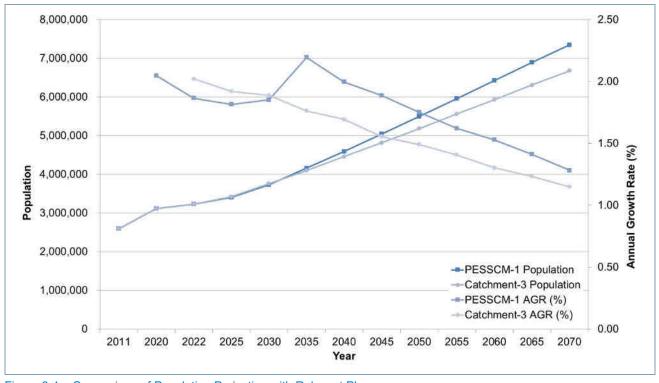


Figure 3-1 Comparison of Population Projection with Relevant Plans

Table 3-6 Population Projection by Ward (person)

		Ward	2011	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)
CCC	1	South Pahartali	39,247	61,679	83,765	118,150	186,773	278,513
	2	Jalalabad	103,314	163,705	199,458	255,323	340,272	431,743
	3	Panchlaish	68,794	101,615	129,726	166,060	230,152	296,366
	4	Chandgaon	107,807	157,612	201,214	265,199	375,730	492,210
	5	Mohara	86,491	107,920	131,490	168,318	224,319	284,620
	6	East Sholashahar	62,113	63,689	77,599	95,058	124,527	153,403
	7	West Sholashahar	125,517	164,553	180,316	200,168	228,392	251,699
	8	Sulakbahar	138,200	141,570	172,489	211,296	272,085	331,066
	9	North Pahartali	78,313	104,316	116,588	132,335	154,016	174,000
	10	North Kattali	41,685	61,802	78,900	100,999	139,980	183,374
	11	South Kattali	75,316	109,825	129,183	152,902	188,357	221,398
	12	Saraipara	73,636	86,820	102,123	120,874	148,902	176,762
	13	Pahartali	80,390	89,594	105,386	124,737	155,947	185,125
	14	Lalkhan Bazaar	75,335	69,617	75,087	80,912	87,849	93,969
	15	Bagmoniram	51,603	49,166	57,832	68,451	85,579	101,591
	16	Chawk Bazar	49,065	56,342	67,153	82,261	105,927	128,888
	17	West Bakalia	97,145	111,193	122,750	137,619	158,589	177,398
	18	East Bakalia	65,869	76,046	94,292	120,702	163,648	210,730
	19	South Bakalia	76,302	55,893	60,644	66,658	74,563	79,758
	20	Dewan Bazar	32,633	34,982	37,137	38,842	41,548	44,443
	21	Jamalkhan	40,014	45,944	51,349	57,569	66,341	74,209
	22	Enayet Bazar	35,454	33,965	37,961	42,560	49,045	54,862
	23	North Pathantooly	31,175	35,412	39,092	43,827	50,007	55,938
	24	North Agrabad	126,759	152,331	168,164	188,535	217,263	239,433
	25	Rampur	50,366	68,299	78,160	89,819	107,949	124,398
	26	North Halishahar	52,999	67,948	82,789	105,977	141,236	179,202
	27	South Agrabad	66,755	58,052	66,433	77,478	94,273	109,718
	28	Pathantooly	50,410	50,816	58,153	66,827	79,330	91,417
	29	West Madarbari	44,348	36,805	40,330	44,770	51,082	56,296
	30	East Madarbari	45,928	40,949	46,861	53,850	64,720	74,582
	31	Alkaran	17,857	15,106	16,883	19,163	22,525	25,700
	32	Andarkilla	24,423	30,290	33,853	38,425	45,166	51,535
	33	Firingee Bazaar	26,620	28,390	30,621	33,325	37,278	39,875
	34	Patharghata	34,835	32,814	37,551	43,794	53,288	62,019
	35	Boxirhat	30,855	30,088	33,627	38,169	44,865	51,191
	36	Gosaildenga	43,929	44,008	49,623	57,024	67,027	76,479
	37	North Middle Halishahar	41,998	51,620	59,684	70,643	85,955	100,037
	38	South Middle Halishahar	59,990	119,404	140,450	166,238	204,786	243,102
	39	South Halishahar	106,272	256,168	265,537	277,731	292,674	307,655
	40	North Patenga	88,593	97,015	118,204	144,798	189,687	237,149
	41	South Patenga	44,084	67,154	76,849	89,626	107,717	125,366
		·Total	2,592,439	3,230,517	3,755,306	4,457,012	5,559,369	6,677,219
		azila Paurashava	62,588	94,244	114,827	146,988	195,892	248,552
	ı Upaz	zila Paurashava	59,148	70,701	96,018	130,299	200,054	283,433
Total			2,714,175	3,395,462	3,966,151	4,734,299	5,955,315	7,209,204

Appendix. Planning Framework

3.3 Sewage Service Coverage

3.3.1 Introduction

Sewage Service coverage is the basis of the sewerage system plan, so it should be decided carefully to ensure the project feasibility. In this study, most of the resident areas including slum area within the project area is considered including urban areas and sub-urban areas.

Sewage Service coverage of this study is determined in consideration of the following factors:

- Sewerage system is the social infrastructure as same as roads, parks, water supply system and rivers. In addition, long-term perspective plan should be considered in the planning of sewerage system because it is difficult to expand the capacity of sewerage system once it is constructed.
- Sewage Service coverage should be determined by closely reviewing and analysing relevant plans and urban development plans.
- Sewage Service coverage should be established in the consideration of natural conditions, social conditions, and financial conditions.
- Sewage Service coverage should include areas that may become urbanized in the future as well as
 existing urban areas to improve the hygienic and sanitary condition of the project area and to improve
 the water quality of the river and restoration of the ecosystem.

Considering the above factors, the Sewage Service coverage for this study is set based on the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage projects of Chattogram City and site survey. In particular, in the selection of sewage treatment areas, areas requiring management in accordance with urban areas were preferentially incorporated into treatment areas in order to accommodate the population and industry of urban areas among urban landscape and management areas. In the case of rural settlements, it is planned in consideration of environmental characteristics for the preservation of the natural environment.

3.3.2 Current Sewage Service Coverage

3.3.2.1 Current Status

Sewage Service coverage refers to the percentage of the population served by the centralised sewerage system of the total population in the project area and it is used as a key indicator of environmental infrastructure development.

As of 2022, Sewage Service coverage is 0% because there is no centralized sewerage system installed in the Chattogram City, so all the domestic and non-domestic wastewater is discharged into nearby rivers or waterways after treatment in the on-site system with septic tanks or without any treatment.

Sewage Service coverage of the Chattogram City is expected to increase gradually when construction of the sewerage system of Catchment-1 (PESSCM-1) is completed which is currently under construction.

3.3.2.2 Sewage Service Coverage of Relevant Plans

In the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP), Sewage Service coverage area of Chattogram City is divided into six catchment areas as below.

Table 3-7 Sewage Service Coverage of Master Plan

Sewage Service Coverage	Location	Area of STP Site (ha)	Capacity of STP (m³/d, 2030)	Remarks
Catchment-1 (PESSCM-1)	Halishahar	66	100,000	
Catchment-2	Kalurghat	19	100,000	
Catchment-3	Fatehabad	30	60,000	
Catchment-4	East Bakalia	33	70,000	
Catchment-5	North Kattali	22	80,000	
Catchment-6	Patenga	30	100,000	

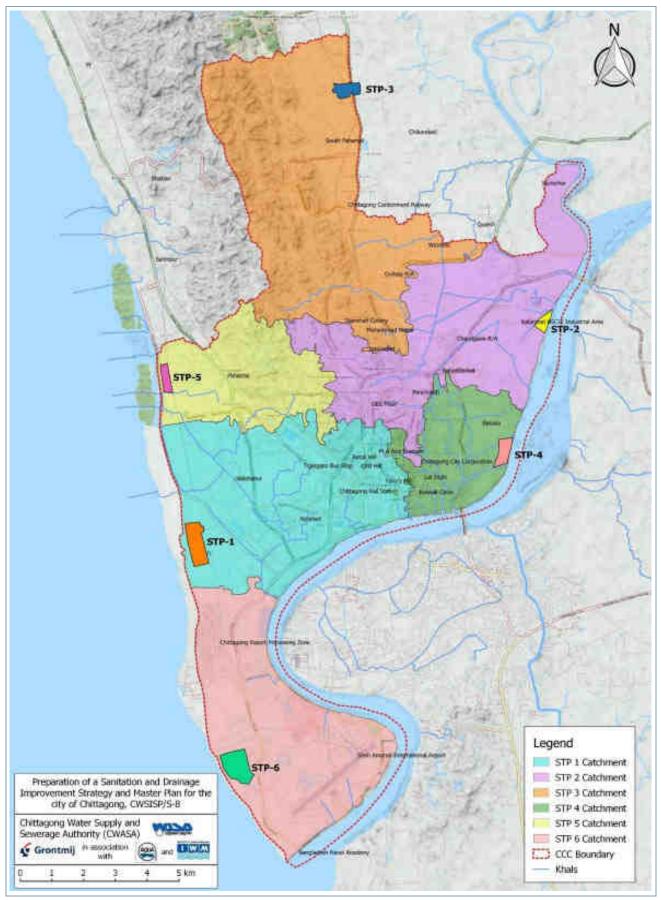


Figure 3-2 Sewage Service Coverage of Master Plan

3.3.3 Sewage Service Area

Currently five sewerage projects including this project are on-going in Chattogram City under CWASA. Although six sewage treatment plants were planned in the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP), number of STP is adjusted during the project implementation of each project due to the difficulty of the land acquisition of sewage treatment plant sites of Catchment-4, Catchment-5 & Catchment-6 as below.

- STP of Catchment-5 & Catchment-6 is planned to be integrated in the site of STP of Cathcment-1 (PESSCM-1).
- STP of Catchment-2 & Catchment-4 is planned to be integrated in the site of STP of Cathcment-2.

Table 3-8 On-going Sewerage Projects

Category	Location of STP	Capacity of STP (Final/Phase 1, m³/d)	Fund Source	Current Progress
Catchment-1 (PESSCM-1)		100,000	GOB	Under Construction
Catchment-5	Halishahar	100,000 (50,000)	AFD	EOI
Catchment-6		100,000	PPP	Feasibility Study On-going
Catchment-2&4	Kalurghat	300,000 (60,000)	JICA	Feasibility Study Completed
Catchment-3	Fatehabad	120,000 (60,000)	EDCF	Feasibility Study Completed

Sewage Service area is set based on the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage projects of Chattogram City and site survey.

Table 3-9 Sewage Service Area (% of Ward in Catchment)

	Ward	Total	Catchment -1	Catchment -2&4	Catchment -3	Catchment -5	Catchment -6
1	South Pahartali	100.0			100.00		
2	Jalalabad	100.0		10.00	85.00	5.00	
3	Panchlaish	100.0		40.00	60.00		
4	Chandgaon	100.0		90.00	10.00		
5	Mohara	100.0		100.00			
6	East Sholashahar	100.0		100.00			
7	West Sholashahar	100.0		40.00	60.00		
8	Sulakbahar	100.0		70.00	5.00	25.00	
9	North Pahartali	100.0			5.00	95.00	
10	North Kattali	100.0				100.00	
11	South Kattali	100.0	80.00			20.00	
12	Saraipara	100.0	75.00			25.00	
13	Pahartali	100.0	30.00	10.00		60.00	
14	Lalkhan Bazaar	100.0	72.00	28.00			
15	Bagmoniram	100.0	62.00	38.00			
16	Chawk Bazar	100.0		100.00			
17	West Bakalia	100.0		100.00			
18	East Bakalia	100.0		100.00			
19	South Bakalia	100.0		100.00			
20	Dewan Bazar	100.0		100.00			
21	Jamalkhan	100.0	32.00	68.00			
22	Enayet Bazar	100.0	100.00				
23	North Pathantooly	100.0	100.00				
24	North Agrabad	100.0	100.00				
25	Rampur	100.0	100.00				
26	North Halishahar	100.0	100.00				
27	South Agrabad	100.0	100.00				
28	Pathantooly	100.0	100.00				
29	West Madarbari	100.0	100.00				
30	East Madarbari	100.0	100.00				
31	Alkaran	100.0	100.00				
32	Andarkilla	100.0	35.00	65.00			
33	Firingee Bazaar	100.0	42.00	58.00			
34	Patharghata	100.0		100.00			
35	Boxirhat	100.0		100.00			
36	Gosaildenga	100.0	100.00				
37	North Middle Halishahar	100.0	100.00				
38	South Middle Halishahar	100.0	75.00				25.00
39	South Halishahar	100.0					100.00
40	North Patenga	100.0					100.00
41	South Patenga	100.0					100.00

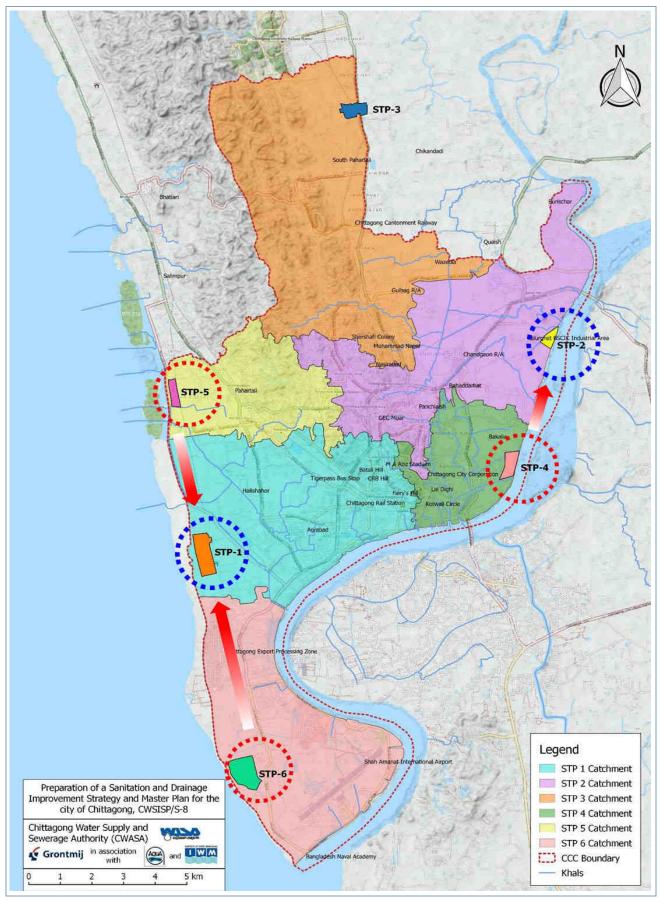


Figure 3-3 Sewage Service Area

3.3.4 Sewage Serving Option

Sewage serving options is reviewed to decide the Sewage Service coverage of the project area. Sewage Serving option is divided into centralized system and decentralized system. Centralized system collects domestic and non-domestic wastewater by sanitary sewer and treats in the sewage treatment plant. Decentralized system is divided into on-site system that treats wastewater from the single dwelling and cluster system that treats wastewater from multiple dwellings.

3.3.4.1 On-Site System

On-site sewage serving system refers to any system where wastewater produced from single dwelling is treated and returned to the ecosystem within the boundaries of that site. Currently, there is no centralized sewerage system in the project area, so most households and commercial facilities in the project area use on-site system such as septic tanks and conventional toilets.

3.3.4.2 Cluster System

Cluster Sewage Serving system is the community systems for two or more dwellings. They are generally much smaller in scale than a centralized system. The wastewater from each cluster of dwellings may be treated on-site by individual septic tanks before the septic tank effluent is transported through alternative sewer systems to a nearby off-site location for further treatment and ecosystem re-entry. In other situations, the full wastewater flow from each cluster may be reticulated off-site to a local treatment site. As in the case of an on-site system, sludge or bio-solids may be managed independently.

3.3.4.3 Centralized System

In a centralized system all wastewater is collected at its source and then transported through sanitary sewer to a central sewage treatment plant. After treatment, the resulting effluent and sludge is discharged at a particular point, thus re-entering the ecosystem. As in the case of cluster systems, some treatment may occur on-site prior to the wastewater being transported to the central treatment site. Although centralized system is the most expensive sanitation option it has proven long-term advantages particularly in densely populated urban areas. The operating costs of the various servicing systems need to be considered when choosing an appropriate technology. For centralized sewerage, the cost of pumping should be considered with who is going to pay for it.

3.3.4.4 Comparison of Sewage Serving Option

A comparison of the various servicing systems is presented as below.

- On-site sanitation is the first option when considering a sanitation intervention. Such systems have distinctive advantages because they are individual systems so the disposal of faecal materials is dispersed over a wide area. One of the main disadvantages with centralized system is that when they go wrong, the resulting problems can be very acute.
- Septic tanks are already widely used in the project area however; effluent disposal by percolation to soil is not always possible in high density areas where space is not available. In other areas the groundwater table is too high and soil has poor permeability. As a result, septic tank effluent is most often discharged to stormwater drains. This can be a public health problem mainly in high density urban areas and hotel zones where wastewater disposal is more concentrated.
- As population densities and water consumption increase with the development of the project area, a
 centralized servicing scheme would be more appropriate for the high-density urban areas and it will
 become technically and economically feasible to connect these other areas into the centralized system.

Table 3-10 Comparison of Sewage serving Option

Category	On-site System	Centralized System
Description	 Treatment of domestic wastewater from private households and commercial facilities in individual or communal septic tanks (up to about 50 households). Discharge of effluents to soak pits where conditions are suitable or to storm water drains where groundwater table is too high 	Collection of all household wastewater and transportation using conventional sewerage to a central treatment facility
Advantages	Simple and durable Requires little space because it is underground. Long-term sustainability, reliable with minimal maintenance and operational requirements	 Better health and better downstream environment if properly operated and maintained. Lowest cost option in for higher density urban areas Management and control are more easily centralized
Disadvantages	 Low treatment efficiency. Septic tanks do not remove pathogenic material therefore discharge to drains will contaminate the environment Septic tanks need regular de-sludging and treatment of Faecal Sludge Can be expensive in urban areas 	Will take a long time to build. Breaks down quickly unless there is adequate capacity for O&M When large centralized schemes do not work the resultant pollution and health problems are often severe
Suitability	Appropriate in rural areas and urban areas low to medium density	 Reluctance to connect and poor cost recovery can jeopardize sustainability. Collection system will require pumping

3.3.4.5 Selection of Sewage Serving Option

Sewage Serving option of the project area is selected as below after comparison of option.

- Chattogram City: Currently on-site system is used and centralized sewerage system will be introduced
 in the priority area after completion of the project. Other areas will remain as on-site system until the
 centralized system is introduced.
- Hathazari & Raozan Upazila Paurashava: Currently on-site system is used and it remain as on-site system until the centralized system is introduced. Through the project, faecal sludge management will be introduced to collect and treat the faecal sludge from septic tanks in this region.

Table 3-11 Sewage Serving Option

Category	Current Status	This Study	Remarks
Chattogram City	On-Site System	On-Site System & Centralized System	
Hathazari Upazila Paurashava Raozan Upazila Paurashava	On-Site System	On-Site System	

3.3.5 Sewage Service Coverage Projection

To improve the Sewage Service coverage in the project area, the expansion of sewerage system and the development of the existing urban area and low-density area served by on-site system should be implemented in parallel to improve the hygienic and sanitary condition of the project area and to improve the water quality of the river and restoration of the ecosystem.

In this study, it is planned to introduce the sewerage system to five wards in priority where current water service coverage under CWASA is available out of seven wards in Catchment-3 in the consideration of project budget. Sewage Service coverage of the Catchment-3 is 0% at the end of 2022 and is planned to achieve 60.0% by 2030 after completion of the project and to achieve 80.0% by 2070 in the final target year.

	Ward	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
1	South Pahartali	-	25.0	42.2	63.4	80.0	
2	Jalalabad	-	75.0	76.3	78.1	80.0	
3	Panchlaish	-	70.0	72.5	76.3	80.0	
4	Chandgaon	-	0.0	20.0	50.0	80.0	
7	West Sholashahar	-	70.0	72.5	76.3	80.0	
8	Sulakbahar	-	70.0	72.5	76.3	80.0	
9	North Pahartali	-	0.0	20.0	50.0	80.0	
	Total		60.0	65.0	72.5	80.0	

3.3.6 Sewage Service Population

3.3.6.1 Population Projection

Seven Wards out of 41 Wards in the Chattogram is allocated to Catchment-3 Sewage Service area. Some wards are also included in the sewage service area of other on-going sewerage projects such as Catchment-2&4 and Catchment-5, so the population projection of Catchment-3 is estimated by multiplying the area ratio of Catchment-3 to the population projection of each ward.

Table 3-13 Population Projection of Catchment-3 (person)

	Ward	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Catchment-3 Area Ratio (%)
1	South Pahartali	61,679	83,765	118,150	186,773	278,513	100.00
2	Jalalabad	139,149	169,539	217,025	289,231	366,982	85.00
3	Panchlaish	60,969	77,836	99,636	138,091	177,820	60.00
4	Chandgaon	15,761	20,121	26,520	37,573	49,221	10.00
7	West Sholashahar	98,732	108,190	120,101	137,035	151,019	60.00
8	Sulakbahar	7,079	8,624	10,565	13,604	16,553	5.00
9	North Pahartali	5,216	5,829	6,617	7,701	8,700	5.00
	Total	388,585	473,904	598,614	810,008	1,048,808	

3.3.6.2 Sewage Service Population

Sewage service population is estimated by multiplying the Sewage Service coverage of each ward to the population projection estimated above.

Table 3-14 Sewage Service Population of Catchment-3 (person)

	Ward	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
1	South Pahartali	-	20,933	49,913	118,426	222,810	
2	Jalalabad	-	127,154	165,590	225,889	293,586	
3	Panchlaish	-	54,485	72,236	105,363	142,256	
4	Chandgaon	-	-	5,304	18,787	39,377	
7	West Sholashahar	-	75,733	87,073	104,558	120,815	
8	Sulakbahar	-	6,037	7,660	10,380	13,242	
9	North Pahartali	-	-	1,323	3,851	6,960	
	Total		284,342	389,099	587,254	839,046	

3.4 Wastewater Generation Projection

3.4.1 Introduction

Wastewater generation projection is an important factor that determines the capacity of the sewerage system and it is generated from the households, commercial, institutional and small & large industrial facilities in the project area.

Domestic wastewater from the households and non-domestic wastewater from commercial and institutional is estimated based on the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the ongoing sewerage projects of Chattogram City. Large industrial wastewater generation is excluded in the planning framework because large industrial factories operate their own effluent treatment plant facility. In this study, wastewater generation factor is planned in the consideration of relevant plans as below.

 Table 3-15
 Wastewater Generation Factor of Chattogram Sewerage Projects

Category		Unit Dom Water Cons. (Lpcd)	WW Dom Gen. Ratio (%)	Unit Dom WW Gen. (Lpcd)	Peak Factor	Non- Domestic Ratio	Infiltration
Relevant	CWSISP	115	80	92	Babbit Factor 1.33	15% of Unit Dom WW Gen.	15% of (Dom+ Non-Dom)
	Catchment-1 (PESSCM-1)	120	90	108	Daily Max 1.25 Hourly Max1.875	15% of Unit Dom WW Gen.	15% of (Dom+ Non-Dom)
Plans	Catchment-5	120	90	108	Daily Max 1.25 Hourly Max 1.875	15% of Unit Dom WW Gen.	15% of (Dom+ Non-Dom)
	Catchment-2&4	120	90	108	Daily Max 1.25 Hourly Max 1.875	15% of Unit Dom WW Gen.	15% of (Dom+ Non-Dom)
This Study (Catchment-3)		120	90	108	Daily Max 1.25 Hourly Max 1.875	15% of Unit Dom WW Gen.	15% of (Dom+ Non-Dom)

Source: CWSISP & Chattogram Sewerage Project Reports

3.4.2 Domestic Wastewater Generation

3.4.2.1 Unit Domestic Water Consumption

Domestic wastewater defined as wastewater from residential settlements and services, such as houses; and which originates predominantly from toilets, bathrooms and kitchens and it takes charge of most of the wastewater generation in the municipality.

Although unit domestic wastewater generation should be obtained from the field survey, there are practical difficulties to obtain the reasonable data because the sewerage system is not available in the project area. Domestic wastewater generation is closely related to the water consumption, it can be estimated from the related water supply master plan or actual statistics of water supply system, however administration system is just introduced to the CWASA to manage the water consumption data of each household, so actual data is not available yet to apply for this project.

In this study, unit domestic water consumption is planned based on the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage projects of Chattogram City.

As countries develop, it is common for unit water consumption to increase as social living standards improve, however annual increase of unit water consumption in the future was not considered in the relevant plan, so it is also not considered in this study, so it should be reviewed in the water supply master plan.

Table 3-16 Unit Domestic Water Consumption of Relevant Plans (Lpcd)

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
CWSISP	115	115	-	-	-	
Catchment-1 (PESSCM-1)	120	120	120	120	120	
Catchment-5	120	120	120	120	120	
Catchment-2&4	120	120	120	120	120	

Table 3-17 Unit Domestic Water Consumption (Lpcd)

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Unit Domestic Water Consumption	120	120	120	120	120	

3.4.2.2 Wastewater Generation Ratio

Wastewater generation is estimated by using a percentage of water consumption. It refers to vaporization of used water, discharge to other water systems, and consumption as finished goods with the remaining flowing into the sewerage system. Typical estimate used for wastewater generation is to utilize 90 percent of water consumption as wastewater.

In this study, wastewater generation ratio is planned based on the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage projects of Chattogram City.

Table 3-18 Wastewater Generation Ratio (%)

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Wastewater Generation Ratio	90.0	90.0	90.0	90.0	90.0	

3.4.2.3 Unit Wastewater Generation

In the guidelines of the sewerage system master plan (MOE) in Korea, unit wastewater generation should be estimated based on the statistical data of water supply system and water supply system master plan.

In this study, Unit wastewater generation is planned based on the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage projects of Chattogram City due to the lack of statistical data. Unit wastewater generation is estimated by applying the wastewater generation ratio to the unit domestic water consumption as below.

Table 3-19 Unit Wastewater Generation

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Unit Domestic Water Consumption (Lpcd)	120	120	120	120	120	
Wastewater Generation Ratio (%)	90.0	90.0	90.0	90.0	90.0	
Unit Wastewater Generation (Lpcd)	108	108	108	108	108	

3.4.2.4 Peak Factor

Wastewater generation rate usually differs depending on days or hours and those changes are called peak factors. Peak factor is the proportion of the daily maximum flow and hourly maximum flow to the daily average flow. Daily maximum peak factor decides the capacity of sewage treatment plant and hourly maximum peak factor decides sanitary sewer and pumping station.

In general, peak factor is estimated based on the influent flow data & O&M data of existing sewage treatment plant, however there are practical difficulties to obtain the reasonable data because the sewerage system is not available in the project area.

In this study, peak factor is planned based on the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage projects of Chattogram City.

Daily Maximum: 125% of Daily Average

Hourly Maximum: 150% of Daily Maximum

Table 3-20 Peak Factor

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Daily Average	1.00	1.00	1.00	1.00	1.00	
Daily Maximum	1.25	1.25	1.25	1.25	1.25	
Hourly Maximum	1.875	1.875	1.875	1.875	1.875	

Unit daily maximum wastewater generation and unit hour maximum wastewater generation is calculated by applying the peak factor to the unit daily average wastewater generation as below.

Table 3-21 Peak Domestic Wastewater Generation (Lpcd)

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Daily Average	108	108	108	108	108	
Daily Maximum	135	135	135	135	135	
Hourly Maximum	203	203	203	203	203	

3.4.2.5 Domestic Wastewater Generation

Domestic wastewater generation for each Phase is estimated in the consideration of the sewage service population, Sewage Service coverage, unit water consumption, wastewater generation ratio and the peak factor as below.

Table 3-22 Peak Domestic Wastewater Generation (Lpcd)

Ca	ategory	Unit	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)
Populati	Population Projection		388,585	473,904	598,614	810,008	1,048,808
Sewage Se	ervice Coverage	%	-	60.0	65.0	72.5	80.0
Sewage Se	ervice Population	person	-	284,342	389,099	587,254	839,046
Unit Wate	r Consumption	Lpcd	120	120	120	120	120
Wastewater	Wastewater Generation Ratio		90.0	90.0	90.0	90.0	90.0
Unit Waste	vater Generation	Lpcd	108	108	108	108	108
	Daily Avg.	-	1.00	1.00	1.00	1.00	1.00
Peak Factor	Daily Max.	-	1.25	1.25	1.25	1.25	1.25
	Hourly Max.	-	1.875	1.875	1.875	1.875	1.875
Domestic	Daily Avg.	m³/d	-	30,709	42,023	63,423	90,617
Wastewater Generation	Daily Max.	m³/d	-	38,386	52,528	79,279	113,271
(m³/d)	Hourly Max.	m³/d	-	57,721	78,987	119,213	170,326

3.4.3 Non-Domestic Wastewater Generation

Non-domestic wastewater is generated from commercial, institutional and small & large industrial facilities in the project area. In the guidelines of the sewerage system master plan (MOE) in Korea, non-domestic wastewater generation should be estimated based on the statistical data of water supply system and water supply system master plan.

In this study, non-domestic wastewater generation is planned based on the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage projects of Chattogram City due to the lack of statistical data. Non-domestic wastewater generation is estimated as 15% of domestic wastewater generation.

Table 3-23 Non-Domestic Wastewater Generation (m³/d)

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Daily Average	-	4,606	6,303	9,513	13,593	
Daily Maximum	-	5,758	7,879	11,892	16,991	
Hourly Maximum	-	8,658	11,848	17,882	25,549	

3.4.4 Infiltration

Infiltration is the amount of underground water that enters into the sewers through poor joints, cracked pipes, walls and covers of manholes.

In the water supply system or pressurized sewer, it is not necessary to consider the inflow of groundwater. However, sanitary sewer system is gravity flow and it forms a free water surface underground, if the underground water level is higher than the water level in the sanitary sewer, there is a large amount of infiltration at the pipe joint. It is not easy to estimate the amount of groundwater flowing into a sewage pipe because it varies depending on the size, length, material, connection method, construction condition or age of the pipe, topography and geology, and groundwater level. Sewer pipes are difficult to be absolutely watertight due to their material and structure or construction, so groundwater infiltration is inevitable.

In the guidelines of the sewerage system of Korea, Japan and USA, Design criteria of Infiltration is estimated as below.

Table 3-24 Design criteria of Infiltration

	Category	Design Criteria	Remarks
	Design Manual of the Sewerage System	Less than 20% of the daily maximum wastewater generation	
Korea	Guideline of the Sewerage System Master Plan	 Less than 20% of the daily maximum wastewater generation 0.2~0.4L/sec per 1km of sanitary sewer 17,500~36,300L/day/ha on the basis of drainage area 	
Japan	Design Manual of the Sewerage System	10-20% of the daily maximum wastewater generation	
USA	WEF (Water Environment Federation)	• 71m³/km · d per km (less than D600mm) • 24~95m3/km · d (more than D600mm)	

In this study, infiltration is assumed to 15% of the daily average domestic & non-domestic wastewater generation without any daily and hourly variation based on the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage projects of Chattogram City.

Table 3-25 Infiltration Ratio (%)

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Infiltration Ratio (% of Daily Average)	15.0	15.0	15.0	15.0	15.0	

Table 3-26 Infiltration (m³/d)

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Domestic Infiltration	-	4,606	6,303	9,513	13,593	
Non-Domestic Infiltration	-	691	945	1,427	2,039	
Total	-	5,297	7,248	10,940	15,632	

3.4.5 Overall Wastewater Generation

Overall wastewater generation of the project area is estimated as below.

- In Phase 1, daily average wastewater generation is 55,574m³/d with the domestic wastewater generation as 42,023m³/d, non-domestic wastewater generation as 6,303m³/d and infiltration as 7,248m³/d in year 2040.
- In Phase 3, daily average wastewater generation is 119,842m³/d with the domestic wastewater generation as 90,617m³/d, non-domestic wastewater generation as 13,593m³/d and infiltration as 15,632m³/d in the final target year 2070.

Table 3-27 Overall Wastewater Generation (m³/d)

Category		Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
	Daily Avg.	-	30,709	42,023	63,423	90,617	
Domestic	Daily Max.	-	38,386	52,528	79,279	113,271	
	Hourly Max.	-	57,721	78,987	119,213	170,326	
	Daily Avg.	-	4,606	6,303	9,513	13,593	
Non-Domestic	Daily Max.	-	5,758	7,879	11,892	16,991	
	Hourly Max.	-	8,658	11,848	17,882	25,549	
	Daily Avg.	-	5,297	7,248	10,940	15,632	
Infiltration	Daily Max.	-	5,297	7,248	10,940	15,632	
	Hourly Max.	-	5,297	7,248	10,940	15,632	
	Daily Avg.	-	40,612	55,574	83,876	119,842	
Total	Daily Max.	-	49,441	67,655	102,111	145,894	
	Hourly Max.	-	71,676	98,083	148,035	211,507	

Table 3-28 Overall Wastewater Generation by Ward as Daily Maximum (m³/d)

	Ward	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
1	South Pahartali	-	2,990	7,129	16,914	31,825	
2	Jalalabad	-	18,161	23,651	32,263	41,933	
3	Panchlaish	-	7,782	10,317	15,049	20,319	
4	Chandgaon	-	-	758	2,683	5,624	
7	West Sholashahar	-	10,817	12,436	14,934	17,256	
8	Sulakbahar	-	862	1,094	1,483	1,891	
9	North Pahartali	-	-	189	550	994	
Total		-	40,612	55,574	83,876	119,842	

3.4.6 Faecal Sludge Production

In this study, it is planned to introduce the sewerage system to five wards in priority where current water service coverage under CWASA is available out of seven wards in Catchment-3 in the consideration of project budget. Sewage Service coverage of the Catchment-3 is 0% at the end of 2022 and is planned to achieve 60.0% by 2030 after completion of the project and to achieve 80.0% by 2070 in the final target year.

This study proposes a concept for faecal sludge management in order to cope with the coming challenges connected to the rapid growth of the project area. Part of the concept includes the use of on-site system in low density urban areas of Chattogram City, Hathazari and Raozan where the installation of piped sewerage would not be cost effective as reviewed in the Sewage Serving option.

3.4.6.1 Population with On-Site System

Population with on-site system is estimated based on Sewage Service coverage of the project area in the above chapter. It is assumed that all the households, commercial, institutional facilities that are not connected to a centralized sewerage system will use on-site systems. These areas will remain as on-site system until the centralized system is introduced.

Table 3-29 Population with On-Site System (person)

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Chattogram City	388,585	189,562	209,515	222,754	209,762	
Hathazari Upazila Paurashava	94,244	114,827	146,988	195,892	248,552	
Raozan Upazila Paurashava	70,701	96,018	130,299	200,054	283,433	
Total	553,530	400,407	486,802	618,700	741,747	

3.4.6.2 Unit Faecal Sludge Production

Unit faecal sludge production is the amount generated per person for one year and it should be calculated by considering the change in the amount of change depending on dietary habits, toilet structure, climate and living standards. Unit faecal sludge production is planned as below in the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP).

Table 3-30 Unit Faecal Sludge Production of CWSISP

		Unit Faecal Sludge	Faecal Sludge Production		
Year	Projected Population	Production (Liter/capita·year)	Yearly (m³/year)	Daily (m³/d)	
2020	3,111,125	70	217,779	596	
2030	3,730,950	70	261,166	715	

In this study, unit faecal sludge production is planned based on the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage projects of Chattogram City.

Table 3-31 Unit Faecal Sludge Production (Liter/capita·year)

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Unit Faecal Sludge Production	70	70	70	70	70	

3.4.6.3 Faecal Sludge Production

Faecal sludge production is estimated considering the population with on-site system and unit faecal sludge production of the project area. In Phase 1 as of year 2040, faecal sludge production is $93m^3/d$ and in Phase 3 as of the final target year 2070, faecal sludge production is $142m^3/d$.

Although low-density area of Chattogram City and sub-urban area such as Hathazari and Raozan is planned using the on-site system until the final target year 2070, centralized sewerage system can be introduced as the project area develops. In this study, capacity of faecal sludge treatment plant is planned as $100 \, \mathrm{m}^3 / \mathrm{d}$ for the Phase 1 and future expansion plan for the Phase 2&3 have to be established based on the actual faecal sludge collection and O&M status of FSTP.

Table 3-32 Faecal Sludge Production

Cate	egory	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
	CCC	27,201	13,269	14,666	15,593	14,683	
Annual	Hathazari	6,597	8,038	10,289	13,712	17,399	
(m³/year)	Raozan	4,949	6,721	9,121	14,004	19,840	
	Total	38,747	28,028	34,076	43,309	51,922	
	CCC	75	36	40	43	40	
Daily	Hathazari	18	22	28	38	48	
(m^3/d)	Raozan	14	18	25	38	54	
	Total	107	76	93	119	142	
Capacity of	Capacity of FSTP (m³/d)		100	100	100	100	

3.5 Wastewater Characteristic

Influent Quality is an important factor to determine the capacity of the sewage treatment plant, sewerage treatment process and treatment efficiency and it is estimated based on wastewater characteristics of the domestic wastewater and non-domestic wastewater of the project area.

3.5.1 Specific Loads

Wastewater is generated from the households, commercial, institutional and industrial facilities in the project area. Domestic wastewater defined as wastewater from residential settlements and services, such as houses; and which originates predominantly from toilets, bathrooms and kitchens and wastewater quality varies on the living standards of the project area. Non-domestic waster varies on the characteristics of the commercial, institution and industrial facilities, however wastewater quality is considered as equal to the domestic wastewater quality.

In this study, Influent Quality to the sewage treatment plant is decided based on the relevant plan such as Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP) and the on-going sewerage projects of Chattogram City and relative design manual of Korea, Japan and USA.

Table 3-33 Specific Loads (gpcd)

	Category	BOD	COD	SS	T-N	T-P
Korea	Sewerage System Master Plan of Greater Seoul City (2018)	51.98	26.42	40.63	13.69	1.50
Notea	Sewerage System Master Plan of Greater Daejeon City (2017)	50.0	30.0	55.0	10.2	1.55
	Wastewater Engineering (Metcalf & Eddy)	81.65	-	90.72	12.25	3.63
Others	Japan Design Manual of Sewerage System	39.0	18.0	23.0	3.00	0.30
	WEF Design Manual	80.0	190.0	90.0	13.00	3.20
	Catchment-1 (PESSCM-1)	45.0	-	60.0	9.5	1.8
CCC	Catchment-5	40.0	80.0	48.0	4.0	0.6
	Catchment-2&4	40.0	80.0	48.0	4.0	0.6
Dhaka	DBO of Pagla STP (2019)	40.0	86.0	46.0	7.0	-

Table 3-34 Specific Loads of This Study (gpcd)

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
BOD	40.0	40.0	40.0	40.0	40.0	
COD	80.0	80.0	80.0	80.0	80.0	
SS	48.0	48.0	48.0	48.0	48.0	
T-N	9.5	9.5	9.5	9.5	9.5	
T-P	1.8	1.8	1.8	1.8	1.8	

3.5.2 Population Equivalent

Population equivalent is applied for the estimation of specific wastewater loads. Sewage service population is applied for the domestic wastewater load and ratio of non-domestic wastewater to the domestic wastewater is applied for the non-domestic wastewater load.

Table 3-35 Population Equivalent (P·E)

Category	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Domestic Population Equivalent	-	284,342	389,099	587,254	839,046	
Non-Domestic Population Equivalent	-	42,652	58,363	88,089	125,859	
Total	-	326,994	447,462	675,343	964,905	

3.5.3 Influent Quality

Influent Quality to the sewage treatment plan is estimated considering the specific loads and population equivalent with overall wastewater generation of the project area as below.

Table 3-36 Influent Quality of This Study

Cate	gory	Unit	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)
	Domestic	m³/d	30,709	42,023	63,423	90,617	
Overall Wastewater	Non-Domestic	m³/d	4,606	6,303	9,513	13,593	
Generation	Infiltration	m³/d	5,297	7,248	10,940	15,632	
	Total	m³/d	40,612	55,574	83,876	119,842	
	Domestic	P∙E	284,342	389,099	587,254	839,046	
Population Equivalent	Non-Domestic	P·E	42,652	58,363	88,089	125,859	
Equivalent	Total	P·E	326,994	447,462	675,343	964,905	
	BOD	gpcd	40.0	40.0	40.0	40.0	
Unit	COD	gpcd	80.0	80.0	80.0	80.0	
Specific	SS	gpcd	48.0	48.0	48.0	48.0	
Loads	T-N	gpcd	9.5	9.5	9.5	9.5	
	T-P	gpcd	1.8	1.8	1.8	1.8	
	BOD	kg/d	13,080	17,898	27,014	38,596	
	COD	kg/d	26,160	35,797	54,027	77,192	
Total Loads	SS	kg/d	15,696	21,478	32,416	46,315	
	T-N	kg/d	3,106	4,251	6,416	9,167	
	T-P	kg/d	589	805	1,216	1,737	
	BOD	mg/L	322	322	322	322	
	COD	mg/L	644	644	644	644	
Influent Quality	SS	mg/L	386	386	386	386	
	T-N	mg/L	76	76	76	76	
	T-P	mg/L	15	14	14	14	

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

In this study, influent quality is planned in consideration of on-going sewerage projects, related master plans and water quality survey. Since currently there is no sewage treatment in operation in the project area, influent quality is estimated based on the on-going sewerage project. Influent quality should be re-evaluated with actual O&M status of Catchment-1 STP when it is in operation.

Table 3-37 Influent Quality of Relevant Plans (mg/L)

Category	Catchment 1 (PESSCM 1)	Catchment 5	Catchment 2&4	Catchment 3 (This project)
BOD	340	302	310	322
COD	756	605	-	644
SS	454	363	370	386
T-N	72	30	31	76
T-P	14	4	5	15

4 Technical Feasibility Analysis

4.1 Introduction

4.1.1 Introduction

Technical feasibility of the project analyses a basic plan of the sewerage system in accordance with the planning framework prior to implementing the EDCF project and analyze whether impletion of the project is technically feasible or not.

4.1.2 Project Scope

The following conditions are considered preferentially to maximize the effects of the project.

- To place on the priority to improve the current sanitation situation of Chattogram City, Hathajari Upazila and Raozan Upazila.
- To set up the foundation of sewerage system of the project areas considering the future expansion.

Table 4-1 Project Scope

Category	Scope
Project Area	7 wards in Catchment-3 of Chattogram City Corporation Hathazari Upazila & Raozan Upazila
Sewerage System	 Sewage Treatment Plant, Q=60,000m³/d (Daily Average) Faecal Sludge Treatment Plant, Q=100m³/d Sanitary Sewer, D200~1,600mm, L=58.3km Household Connection, 10,000nos. Operation & Maintenance Vehicles (Faecal sludge collection vehicles and O&M Vehicles, etc.)
Capacity Building	Commissioning & Training O&M Support after Construction Completion (2 years)
Consulting Service	Detailed Design & Bidding SupportConstruction Supervision

Note) The project scope is subject to change in according to the consultation between KEXIM and the project executing agency (CWASA).

Table 4-2 Project Scope and R&R

Table 4-2	Catagory	EDCF	GOB
Works	Category Construction	Sewage Treatment Plant, Q=60,000m³/d (Daily Average) Faecal Sludge Treatment Plant, Q=100m³/d Sanitary Sewer, D200~1,600mm, L=58.3km Operation & Maintenance Vehicles (Faecal sludge collection vehicles and O&M Vehicles, etc.)	Household Connection: 10,000nos.
	Capacity Building	Commissioning & Training O&M Support after Construction Completion (2 years)	
Cons	sulting Service	Detailed Design & Bidding Support Construction Supervision	
Со	ontingencies	Physical Contingencies Price Contingencies	
Taxe	es and Duties		VAT AIT Custom Duties
	Acquisition & ettlement Cost		Land Acquisition Cost Resettlement Cost
Project N	Management Cost		PMU Operating Cost
EDCF Service Charge		EDCF Service Charge	

4.1.3 Specific Request from PEA

There is specific request from PEA regarding household connection financing support, reserve facilities for sludge treatment, reduction of O&M cost. The Consultant have discussed with KEXIM and PEA during feasibility study, it is summarized as below.

Table 4-3 Specific Request from PEA

Category	Request from PEA	Review
Household Connection Financing	Insufficient financial resources of GOB for household connection construction, financing support from EDCF loan is requested.	Household connection is planned as GOB portion in FS, the procurement method will be decided to select the contractor during the detailed design stage.
Reserve Facilities for Sludge Treatment	Reserve facilities for sludge treatment such as sludge drying bed, faecal sludge treatment plant, sludge cake storage facility can be an option to reduce the O&M cost of STP in dry season.	Reserve facilities for sludge treatment are not included in the project scope because the construction cost is about 12 million USD, so the initial investment cost is excessive.
Reduction of O&M cost	O&M cost is a burden to PEA after project completion.	Energy efficient equipment & power control system are considered Biogas power generation (Phase 2) & Solar power generation (Phase 1) is planned as a renewable energy source for energy self-sufficient plant.

4.2 Sewage Treatment Plant

4.2.1 Introduction

In this project, a sewage treatment plant is planned in accordance with the following basic directions to prevent water pollution in public waters, to reduce the pollution due to urban development, and to implement a reasonable long-term plan until 2070 as the final target year.

- Analysis of planning framework such as planned population, wastewater generation, influent quality and establishment of phase plan
- Set up of effluent quality by reviewing the standard sewage discharge and other sewage project of GOB

4.2.2 Phase Plan of Sewage Treatment Plant

4.2.2.1 Introduction

Sewage treatment plant is a part of the sewerage system that is the basis of urban life, and once they are constructed, it is difficult to rehabilitate. Therefore, long term phase plan should be established in consideration of the overall plan based on the target year of 2070

In particular, for the phase plan of sewage treatment plant should be determined reasonably according to the annual progress of sanitary sewer construction the amount of influent quantity by the target year and financial conditions.

4.2.2.2 Phase Plan

This project plans to construct a sewage treatment plant with a capacity of 60,000m³/d to treat the wastewater generated in the project area for the Phase 1 in target year 2040. Phase plan of the second and third phase is also established to treat the wastewater for the final target year 2070.

- Phase 1: Construction of STP with a capacity of 60,000m³/d
- Phase 2: Expansion of STP with a capacity of 30,000m³/d
- Phase 3: Expansion of STP with a capacity of 30,000m³/d

Table 4-4 Phase Plan of Sewage Treatment Plant (m³/d)

Cate	egory	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)
	r Generation Average)	40,612	55,574	83,876	119,842
STP	Daily Avg.	60,000	60,000	90,000	120,000
Capacity	Daily Max.	75,000	75,000	115,000	150,000
Expansio	n Capacity	-	-	30,000	30,000
Balance		19,388	4,426	6,124	158

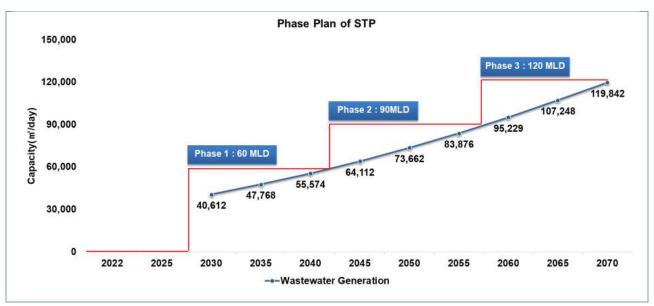


Figure 4-1 Phase Plan of Sewage Treatment Plant

4.2.3 Treatment Process of Sewage Treatment Plant

4.2.3.1 Introduction

Treatment process of sewage treatment plant is operated in close relationship with each other. In addition, since it is a basic urban facility, it is difficult to rehabilitate after construction and the derivative effect lasts for a long time, so it should be a treatment plant with good efficiency, high safety, and economically advantageous treatment process.

In this plan, treatment process of sewage treatment plant is established in consideration of the following items, such as planned influent quality, effluent quality standards, treatment performance stability, operation & maintenance, economic feasibility and environmental impact.

- Wastewater generation and Wastewater Influent Quality
- Effluent quality considering legal standard
- Easiness of operation and maintenance
- Suitable to local conditions
- Stable treatment efficiency
- Economic feasibility of construction cost and O&M cost

4.2.3.2 Influent & Effluent Quality

4.2.3.2.1 Influent Quality

The Influent Quality is a design factor that serves as a standard for sewage treatment plant planning, such as treatment method and efficiency, and is calculated by considering the unit load within the sewage service coverage. In this feasibility study, it is planned in consideration of on-going sewerage projects, related master plans and water quality survey.

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

Table 4-5 Influent Quality (mg/L)

Category	Catchment 1 (PESSCM 1)	Catchment 5	Catchment 2&4	Catchment 3 (This project)
BOD	340	302	310	322
COD	756	605	-	644
SS	454	363	370	386
T-N	72	30	31	76
T-P	14	4	5	15

4.2.3.2.2 Target Effluent Quality

The Bangladesh Department of Environment (DoE) established the standard Sewerage discharge in 1997 and revised the standard in March 2023. Bangladesh mainly have regulated the removal of SS and BOD, COD contained in the wastewater and the discharge standards have been strengthened recently to remove T-N and T-P to prevent eutrophication in the public water body. In the Catchment-1 project, which is under construction, a target effluent water quality was set up as stronger than the effluent standard. In this feasibility study, target effluent quality is set up in consultation with PMU as follows.

Table 4-6 Target Effluent Quality

Table 4-0 Target	Lindent Quality				
Category	Unit	Standard Sew 1997	age Discharge 2023	Target Efflu Catchment 1	uent Quality Catchment 3
Temperature	℃	30	30	24	24
pН	-	-	6-9	6-9	6-9
BOD	mg/L	40	30	20	20
COD	mg/L	-	125	100	100
SS	mg/L	100	100	30	30
Oil and Grease	mg/L	-	10	-	-
NO3-N	mg/L	250	50	40 as T-N	40 as T-N
PO4-P	mg/L	35	15	10 as T-P	10 as T-P
Coliform	CFU/100mL	1000	1000	1000	1000

^{*}Source: Standard Sewerage discharge in the Environment Conservation Rules (1997&2023, DOE)

4.2.3.3 Sewage Treatment Process

4.2.3.3.1 Unit Process

Sewage treatment plant is a comprehensive facility combining unit processes, and consists of sewage treatment process and sludge treatment process. It is planned considering the function and purpose of each unit process.

- The target year for the inlet sewer to the STP is set up as 2070, so civil structure of pre-treatment & inlet pumping station is planned to cater the influent wastewater for the Phase 3 and mechanical, electrical/instrumentation facilities are planned for the Phase 1.
- A2O process is applied as advanced sewage treatment process to comply with the target effluent quality.
- Sludge stabilization process (anaerobic digestion) is planned to be introduced in Phase 2 in the consideration of the difficulty of O&M.
- Primary sedimentation tank is planned to be introduced in Phase 2 with the sludge stabilization process in the consideration of the high concentration of organics in the raw sludge
- Faecal sludge is planned to treat with sewage sludge after pre-treatment and thickening.
- Actual O&M status of Phase 1 should be analyzed when the expansion of Phase 2 & Phase 3 of sewage treatment plant is implemented.

kunhwa

Table 4-7 Unit Process of Sewage Treatment Plant

	Facility	Function	Unit Process	1	Phase 2	3
	Pre-Treatment & Inlet Pumping Station	Pre-treatment, equalization, securing hydraulic stability	Screen & grit removal inlet pumping station, equalization tank	0	0	0
Sewage Treatment	1st Treatment	Reduce the load of the secondary treatment process	Primary sedimentation tank	-	0	0
Process	2 nd Treatment	Removal of organic and nutrients	Bioreactor, secondary sedimentation tank	0	0	0
	3 rd Treatment	Removal of pathogens	Disinfection facility	0	0	0
	Thickening	Reduction of the sludge volume	Thickening facility	0	0	0
Sludge Treatment Process	Stabilization	Reduction of the potential for odour generation and pathogens	Anaerobic digestion	-	0	0
	Dewatering	Reduction of the sludge volume	Dewatering facility	0	0	0
Faecal	Pre-Treatment	Pre-treatment, equalization	Screen & grit removal	0	0	0
Sludge Treatment Process Thickening		Weight reduction for load reduction in subsequent processes	Thickening facility	0	0	0
Od	dour control	Removal of odour from sewage & sludge treatment process	Odour control facility	0	0	0

A2O process is applied as advanced sewage treatment process to remove the organics and nutrients to comply with the target effluent quality. Sewage treatment process is selected as per the consultation with CWASA in the consideration of on-going sewage projects in Chattogram and it is subject to change during the detailed design stage.

Table 4-8 Unit Process of On-going Sewerage Projects

Catagory	STP Site	Capacity	Sev	age trea	tment	Sludge treatment			Odour
Category	SIFSILE	(m³/d)	1 st	2 nd	3rd	Thickening	Stabilization	Dewatering	Control
Catchment-1 (PESSCM-1)		100,000					Aerobic		
Catchment-5	Halishahar	100,000 (50,000)	Primary Sediment ation (Phase 2)	A2O	Not applied (Due to Coastal discharge)	Mechanical thickening	Digestion (Phase 1) Anaerobic Digestion	Mechanical dewatering	Micro organism
Catchment-6		100,000					(Phase 2)		
Catchment- 2&4	Kalurghat	300,000 (60,000)	Primary Sediment ation (Phase 2)	A20	Chlorine disinfection	Mechanical thickening	Anaerobic Digestion (Phase 2)	Mechanical dewatering	Soil filter
Catchment-3	Fatehabad	120,000 (60,000)	Primary Sediment ation (Phase 2)	A20	Chlorine disinfection	Mechanical thickening	Anaerobic Digestion (Phase 2)	Mechanical dewatering	Chemical Cleaning Tower

4.2.3.3.2 Facility of Sewage Treatment Plant

This project plans to construct a sewage treatment facility with a capacity of 60,000m³/d to treat the wastewater generated in the project area for the Phase 1 (2040). Phase plan of the second and third phase is also established to treat the wastewater for the final target year (2070).

Table 4-9 Facility of Sewage Treatment Plant

	Facility		Item	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)		
	Dec Te		Туре	Coarse Scre	een + Vortex Grit Removal +	Fine Screen		
	Pre-11	eatment	Spec.	D4.1m x H3.3m x 2	D4.1m x H3.3m x 3	D4.1m x H3.3m x 4		
	Inlet F	Pumping	Туре	S	submersible Mixed Flow Pun	np		
		ation	Spec.	31.3m³/min x 2(1) 15.6m³/min x 2	31.3m³/min x 4(2) 15.6m³/min x 2	31.3m³/min x 4(2) 15.6m³/min x 4		
	Primary Se	edimentation	Туре	-	Rectang	ular Tank		
		ank	Spec.	-	W7.0m x L35.0m x H3.5m x 3	W7.0m x L35.0 x H3.5m x 4		
		Anaerobic	Туре		Rectangular Tank			
Sewage Treatment		Reactor	Spec.	W14.4m x L18.0m x H5.0m x 4	W14.4m x L18.0m x H5.0m x 6	W14.4m x L18.0m x H5.0m x 8		
Process	Biological	Anoxic	Туре		Rectangular Tank			
	Reactor	Reactor	Spec.	W14.4m x L22.0m x H5.0 x 4	W14.4m x L22.0m x H5.0 x 6	W14.4m x L22.0m x H5.0 x 8		
		Aerobic	Туре		Rectangular Tank			
				Reactor	Spec.	W14.4m x L90.0 x H5.0m x 4	W14.4m x L90.0 x H5.0m x 6	W14.4m x L90.0 x H5.0m x 8
	Se	cond	Туре		Gravity Circular Tank			
	Sedimen	Sedimentation Tank		D30.0m x H3.5m x 4	D30.0m x H3.5m x 6	D30.0m x H3.5m x 8		
	Disin	fection	Туре		Chlorine Disinfection			
		cility	Spec.	W3.0m x L25.0m x H3.0m x 4	W3.0m x L25.0m x H3.0m x 6	W3.0m x L25.0m x H3.0m x 8		
	Thic	kening	Туре		Mechanical Thickening			
	Fa	cility	Spec.	70m³/hr x 4	70m³/hr x 6	70m³/hr x 8		
			Туре	-	Anaerobic Meso	ophilic Digestion		
Sludge Treatment Process		lization cility	Spec.	-	Acid Phase D7.0m x H10.0m x 3 Methane Phase D20.5m x H16.0m x 3	Acid Phase D7.0m x H10.0m x 4 Methane Phase D20.5m x H16.0m x 4		
	Dew	atering	Туре		Mechanical Dewatering			
		cility	Spec.	30m³/hr x 2	30m³/hr x 3	30m³/hr x 4		
	D (Туре	Compr	ehensive Pre-Treatment Equ	uipment		
Faecal Sludge	Pre-tr	eatment	Spec.	50m ³ /hr x 2(1)	50m ³ /hr x 2(1)	50m ³ /hr x 2(1)		
Treatment Process	Thic	kening	Туре		Mechanical Thickening			
		cility	Spec.	3m³/hr x 2	3m³/hr x 2	3m³/hr x 2		
04-	our Control F-	oility	Туре		Chemical Cleaning Tower			
Odd	our Control Fa	Cinty	Spec.	500m³/min x 3	500m³/min x 4	500m³/min x 5		

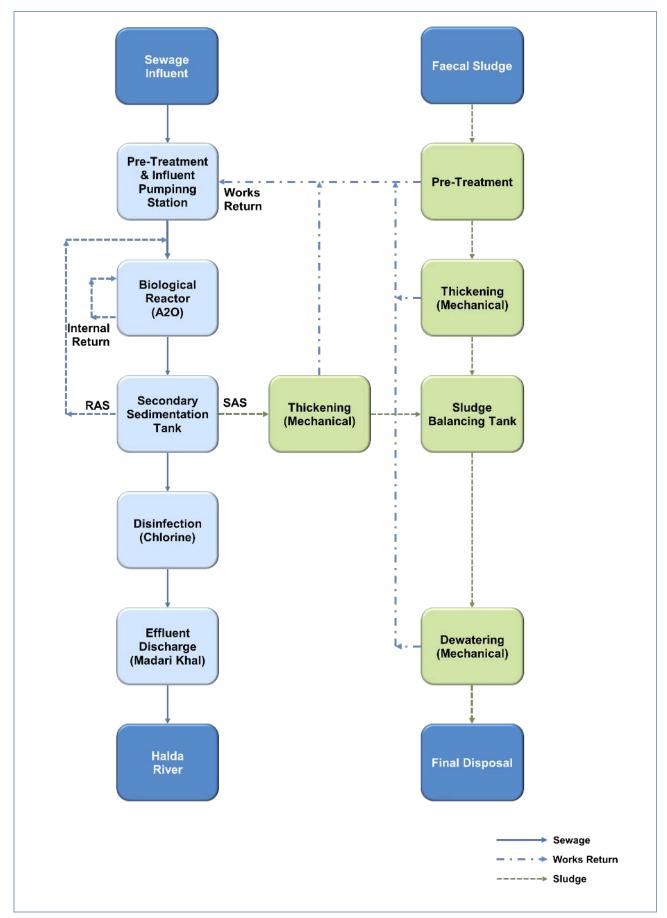


Figure 4-2 Process Flow Diagram of Phase 1

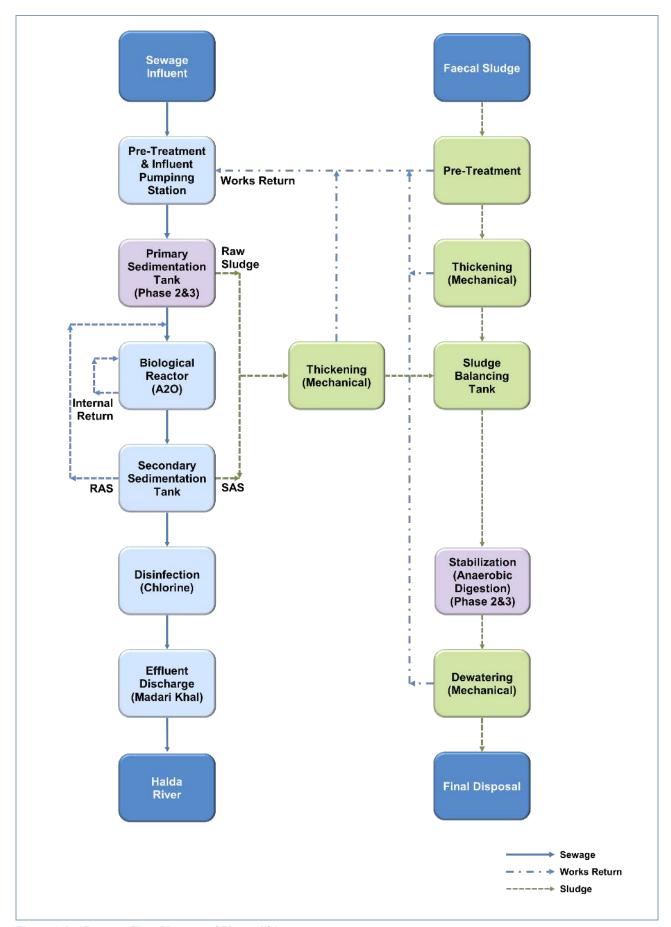


Figure 4-3 Process Flow Diagram of Phase 2&3

4.2.3.3.3 Mass Balance

In this feasibility study, a facility plan is established by STP process calculations for each phase. Actual O&M status of Phase 1 should be analyzed when the expansion of Phase 2 & Phase 3 of sewage treatment plant is implemented.

Table 4-10 Mass Balance of Sewage Treatment Process

Table 4-10 Mass Balance of Sewage Treatment Process BOD COD SS T-N T-P							D					
Catego	rv	Q	Load	עכ Quality	Load	עכ Quality	Load	Quality	Load	Quality	Load	Quality
	. ,	(m³/d)	(kg/d)	(mg/L)	(kg/d)	(mg/L)	(kg/d)	(mg/L)	(kg/d)	(mg/L)	(kg/d)	(mg/L)
	Phase1	75,000	24,150	322.0	48,300	644.0	28,950	386.0	5,700	76.0	1,050	14.0
Sewage Influent	Phase2	112,500	36,225	322.0	72,450	644.0	43,425	386.0	8,550	76.0	1,575	14.0
	Phase3	150,000	48,300	322.0	96,600	644.0	57,900	386.0	11,400	76.0	2,100	14.0
Primary	Phase1	-	-	-	-	-	-	-	-	-	-	-
Sedimentatio	Phase2	116,497	38,541	330.8	78,160	670.9	49,723	426.8	9,102	78.1	1,721	14.8
n	Phase3	155,286	51,329	330.5	104,022	669.9	66,203	426.3	12,130	78.1	2,293	14.8
	Phase1	78,275	25,706	328.4	52,295	668.1	33,064	422.4	6,172	78.8	1,186	15.2
Biological Reactor	Phase2	115,378	26,979	233.8	54,712	474.2	27,348	237.0	8,192	71.0	1,549	13.4
	Phase3	153,797	35,930	233.6	72,186	473.5	36,412	236.8	10,917	71.0	2,064	13.4
Secondary	Phase1	74,979	1,500	20.0	7,498	100.0	2,249	30.0	2,999	40.0	750	10.0
Sedimentatio	Phase2	112,455	2,249	20.0	11,246	100.0	3,374	30.0	4,498	40.0	1,125	10.0
n	Phase3	149,909	2,998	20.0	14,991	100.0	4,497	30.0	5,996	40.0	1,499	10.0
	Phase1	74,979	1,500	20.0	7,498	100.0	2,249	30.0	2,999	40.0	750	10.0
Treated Effluent	Phase2	112,455	2,249	20.0	11,246	100.0	3,374	30.0	4,498	40.0	1,125	10.0
	Phase3	149,909	2,998	20.0	14,991	100.0	4,497	30.0	5,996	40.0	1,499	10.0
	Phase1	2,703	923	341.5	2,370	853.7	2,637	975.6	316	117.1	92	34.1
Works Return (Sewage)	Phase2	3,012	1,975	655.6	4,391	1,457.7	4,576	1,519.1	372	123.4	99	32.9
(22.13.92)	Phase3	4,008	2,629	655.9	5,842	1,457.8	6,090	1,519.6	495	123.4	132	32.9
Works Return	Phase1	55	150	2,727.3	448	8,141.8	200	3,636.4	9	163.6	2	27.3
(Faecal	Phase2	55	150	2,727.3	448	8,141.8	200	3,636.4	9	163.6	2	27.3
sludge)	Phase3	55	150	2,727.3	448	8,141.8	200	3,636.4	9	163.6	2	27.3
Dewatering	Phase1	517	483	933.8	1,240	2,397.9	1,277	2,469.1	146	283.2	42	81.6
Return (Faecal	Phase2	930	191	205.6	871	936.5	1,522	1,636.8	171	184.2	45	48.7
sludge)	Phase3	1,224	250	204.3	1,132	925.1	2,014	1,645.3	227	185.2	60	49.0
	Phase1	3,275	1,556	475.1	3,995	1,219.9	4,114	1,256.1	472	144.1	136	41.5
Total Return	Phase2	3,997	2,316	579.4	5,710	1,428.4	6,298	1,575.6	552	138.1	146	35.5
1.1.1.1	Phase3	5,286	3,029	572.9	7,422	1,404.1	8,303	1,570.7	730	138.1	193	36.6

Table 4-11 Mass Balance of Sludge Treatment Process

Table 4-11 IV	iass Daia		udge me B(atment P)D	S	S	Ţ.	·N	Ţ.	.Р
Catego	ry	Q (m³/d)	Load (kg/d)	Quality (mg/L)								
	Phase1	-	-	-	-	-	-	-	-	-	-	-
Raw Sludge	Phase2	1,119	11,562	10,334.8	23,448	20,958.6	22,375	20,000.0	910	813.6	172	153.8
	Phase3	1,490	15,399	10,337.6	31,207	20,950.1	29,791	20,000.0	1,213	814.3	229	154.0
	Phase1	3,296	9,229	2,800.0	23,073	7,000.0	26,369	8,000.0	3,164	960.0	923	280.0
Surplus Sludge	Phase2	2,923	8,184	2,800.0	20,461	7,000.0	23,384	8,000.0	2,806	960.0	818	280.0
	Phase3	3,888	10,887	2,800.0	27,217	7,000.0	31,105	8,000.0	3,733	960.0	1,089	280.0
	Phase1	-	-	-	-	-	-	-	-	-	-	-
Mixed Sludge	Phase2	4,042	19,747	4,885.6	43,909	10,863.8	45,759	11,321.6	3,716	919.5	991	245.1
	Phase3	5,378	26,285	4,887.6	58,423	10,864.1	60,896	11,323.9	4,946	919.7	1,318	245.1
Thickened	Phase1	593	8,306	14,000.0	20,766	35,000.0	23,732	40,000.0	2,848	4,800.0	831	1,400.0
Sludge	Phase2	1,030	17,772	17,261.3	39,518	38,382.4	41,183	40,000.0	3,345	3,248.5	89	865.9
(Sewage)	Phase3	1,370	23,657	17,265.6	52,581	38,375.7	54,807	40,000.0	4,451	3,248.5	1,186	865.7
	Phase1	100	1,500	15,000.0	4,478	44,780.0	2,000	20,000.0	90	900.0	15	150.0
Faecal Sludge	Phase2	100	1,500	15,000.0	4,478	44,780.0	2,000	20,000.0	90	900.0	15	150.0
Ů	Phase3	100	1,00	15,000.0	4,478	44,780.0	2,000	20,000.0	90	900.0	15	150.0
Thickened	Phase1	45	1,350	30,000.0	4,030	89,560.0	1,800	40,000.0	81	1,800.0	14	300.0
Sludge (Faecal	Phase2	45	1,350	30,000.0	4,030	89,560.0	1,800	40,000.0	81	1,800.0	14	300.0
sludge)	Phase3	45	1,350	30,000.0	4,030	89,560.0	1,800	40,000.0	81	1,800.0	14	300.0
Thickened	Phase1	638	9,656	15,128.0	24,796	38,846.5	25,532	40,000.0	2,929	4,588.5	844	1,322.5
Sludge	Phase2	1,075	19,122	17,794.7	43,548	40,525.5	42,983	40,000.0	3,426	3,187.9	905	842.2
Storage	Phase3	1,415	25,007	17,670.5	56,611	40,003.3	56,607	40,000.0	4,532	3,202.5	1,200	847.7
	Phase1	-	-	-	-	-	-	-	-	-	-	-
Stabilization (Anaerobic)	Phase2	1,075	3,824	3,558.9	17,419	16,210.2	30,443	28,330.4	3,426	3,187.9	905	842.2
,	Phase3	1,415	5,001	3,534.1	22,645	16,001.3	40,273	28,457.9	4,532	3,202.5	1,200	847.7
	Phase1	121	9,173	75,640.0	23,556	194,232.3	24,255	200,000.0	2,782	22,942.5	802	6,612.3
Dewatering Cake	Phase2	145	3,633	25,124.6	16,548	114,436.9	28,921	200,000.0	3,254	22,505.0	860	5,945.2
	Phase3	191	4,751	24,837.4	21,512	112,456.0	38,259	200,000.0	4,305	22,506.8	1,140	5,957.9

4.2.3.4 Proposed Site of STP

4.2.3.4.1 Introduction

Conditions of site, current status of public water bodies, legal standards for effluent quality, collection of wastewater, inter-connection with related plans and environmental infrastructure, environmental impact, ease of construction, and easiness of O&M should be considered when selecting the site of sewage treatments plant as follows.

- Gravity flow of influent is preferred to forced main flow to reduce the O&M cost
- Areas within or adjacent to urban center and sewage service area to minimize the grievance and complaints for inhabitants
- Areas in the vicinity of public water bodies
- No risk of flooding
- Effluent should be sufficiently diluted and mixed, and avoid places where there is a risk of contamination such as raw water of water intake, underground water sources, and fishing grounds.
- Avoid areas near residential and commercial areas where there is a high risk of civil complaints.
- Consider final disposal methods of sludge cake
- Secure sufficient land for future expansion or additional facilities.

4.2.3.4.2 Site Review

The proposed site for sewage treatment plant in this project is in Ward No. 1 (South Pahartali), and the N106 road and railroad pass through the entire site. The planned site was selected in the Chattogram sanitation master plan (2017) and has been owned by CWASA since the 1960s, so land acquisition is not required. However, as the site is geographically located in the center of the Chattogram, construction and operating costs increase due to the inlet & outlet sewer.



Figure 4-4 Photo of STP Proposed Site

Table 4-12 Review of Proposed Site of Sewage Treatment Plant

Category	Description
Land Acquisition	It has been owned by CWASA since 1960s, so the land acquisition is not required.
Resettlement Action Plan	 There are some illegal residents and public facilities such as schools and mosques. → Resettlement action plan shall be prepared during the detailed design stage by CWASA.
Treated	It is located more than 10km from Karnaphuli River and Halda River.
Effluent Discharge	Treated effluent will be discharged to Madari Khal and final receiving water body will be Halda River.
Future Expansion	Sewage treatment plant with a capacity of Q=120,000m³/d for the final targe year of 2070 can be constructed in the A3 side of the proposed site.
Availability of Utility	There is no water supply in the site & Ward No.1, so deep tube well will be utilized for the water supply of the STP.
Service	Electrical power will be supplied from the 33kV sub-station located 1km from the site.
Accessibility	It is located next to N106 road, so it is easy to access the site for the O&M vehicles and faecal sludge collection vehicles.

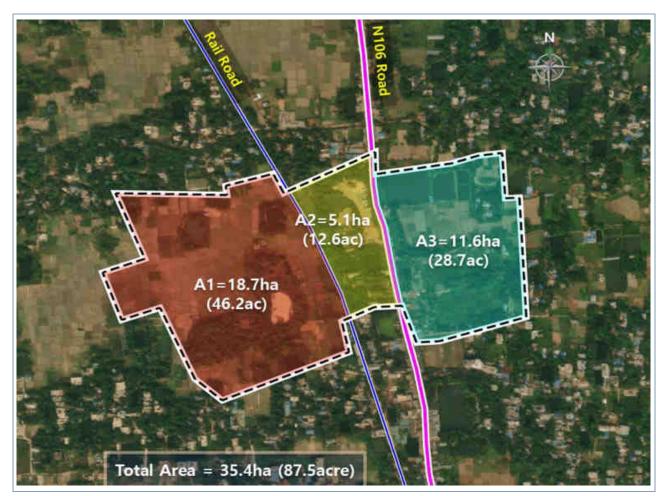


Figure 4-5 Proposed Site of Sewage Treatment Plant

4.2.3.5 Layout of Sewage Treatment Plant

4.2.3.5.1 Introduction

The layout of sewage treatment plant should consider the O&M of sewage treatment plant, systematized operation according to facility capacity, and should reflect future expansion plans. Major consideration for the layout of STP is as follows.

- Optimal O&M route plan for O&M staff
- Considering the relevance of unit process
- Administrative areas should be easily accessible from the visitors.
- Plan for inhabitants and surrounding environment-friendly facilities
- Arrangement plan considering the systematization of facilities
- Land use plan considering the future expansion
- Minimize secondary pollution such as odour, noise and vibration

4.2.3.5.2 Layout Characteristic

The STP layout plan can be divided into an administration area where the O&M staff works, a treatment area, and each area should be planned to maximize their usage.

Table 4-13 Layout Characteristic

Category	Description	Remarks
Administration Area	 Placed at the site entrance and at the center of the current and future expansion site Improvement of work environment by separating the administration area and the Sewage & sludge treatment area. Efficient O&M considerations with future expansion facilities Manages the treatment facilities from the central control room Layout considering the entry of O&M staffs and outside visitors 	
Sewage Treatment Facility	 Systematized operation of treatment facilities and securing wastewater distribution Minimize head loss by straightening facility layout Maximization of site utilization and establishment of economical earthwork plan 	
Sludge Treatment Facility	Minimize piping flow by proximity to and concentration of sludge facility Arrangement considering the future expansion	
Road and Parking lot	 Convenience for O&M staffs and visitors and simplification of vehicle circulation Separation of traffic lines between O&M vehicles and general vehicles Use the side entrance for the entry and exit of O&M vehicles in sludge treatment facilities 	

4.2.3.5.3 Layout of Sewage Treatment Plan

Option study of layout of sewage treatment plant is presented as below. Both options can accommodate the all facilities of STP up to Phase 3 in the final target year of 2070 in the proposed site.

- Option-1: Sewage treatment plant will be located in the on the right side of the N106 road (A3 site)
- Option-2: Sewage treatment plant will be located in the on the left side of the railway (A1 site)

As a result of the option study, Option-1 is selected because it is easy for O&M vehicles and faecal sludge collection vehicles to access to the STP.

Table 4-14 Option of Layout of Sewage Treatment Plant

Category	Option-1	Option-2
Summary	Lay out on the right side of the N106 road (A3 site)	Lay out on the left side of the railway (A1 site)
Site Status	A2=5 (12.6 A1=18.7ha (46.2ac)	N N N N N N N N N N A 3 = 11.6ha (28.7ac)
Required Area	• 80,000m ²	• Same as left
Hydraulic Aspects	Hydraulic flow of sewage treatment process is gravity after inlet pumping station	Same as left
Layout Aspects	 Sewage, sludge process and architectural building is planned separately. The remaining site can be used as environmental infrastructure in the future. Compared to Option-2, the length of the inlet and outlet sewer is shorter. 	Compared to Option-1, the length of the inlet and outlet sewer is longer.
O&M Aspects	Easy access to sewage treatment facilities from NR106 road Ease of maintenance with systemization Good access for maintenance vehicle to each facility	It is somewhat difficult to enter the sewage treatment facility by entering on the left side of the railway
ESIA	Illegal residence in some houses (45 households)	Illegal residence in some houses (15 households)
Aspects	Concern about complaints from nearby residents	
Selection	•	

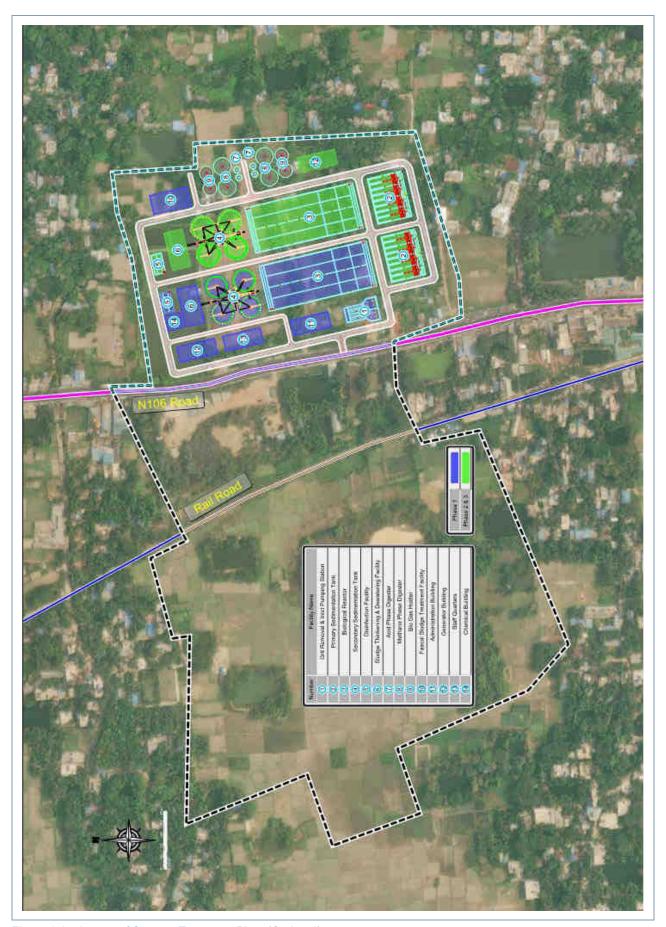


Figure 4-6 Layout of Sewage Treatment Plant (Option-1)

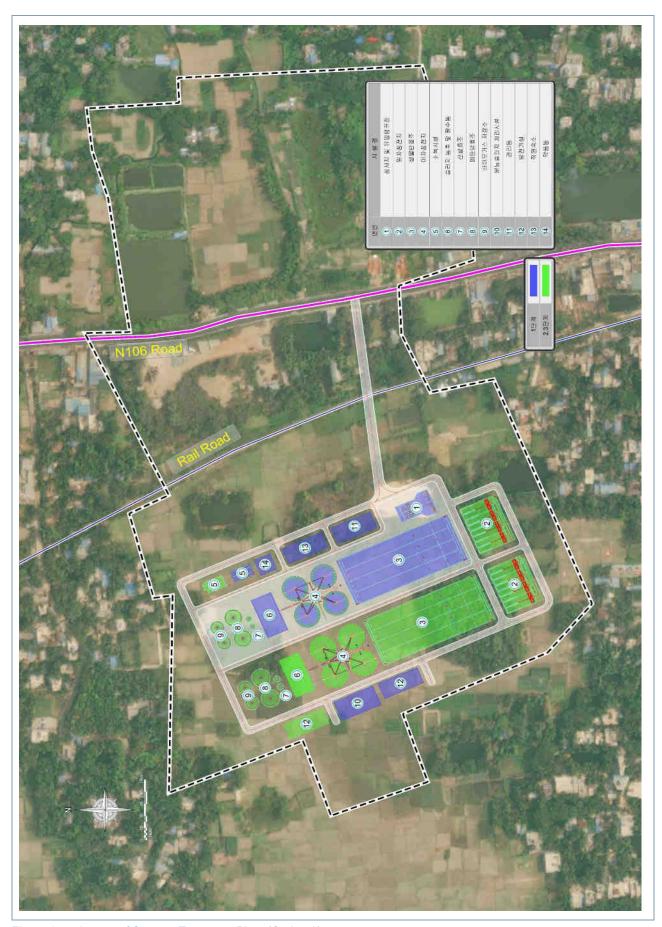


Figure 4-7 Layout of Sewage Treatment Plant (Option-2)

4.2.3.5.4 Ground Level of Sewage Treatment Plant

The ground elevation of sewage treatment plant is determined according to the flood level of the surrounded area to protect the facilities of STP and it acts as an important factor in establishing the hydraulic plan and earthwork plan. Since the sewage treatment plants is a facility to be safe from inundation, ground level is set up with an earthwork plan that considered the problem of sewage treatment function, ground elevation, flood level, surrounding environment and local conditions and current ground level of the STP site is investigated from EL (+) 4.25~4.90m.

The ground level for the ground level of STP of STP is proposed at EL (+) 6.50m to prevent flooding as 20-year frequency of the Bay of Bengal in the consideration of gravity flow discharge, prevention of inundation, economic feasibility and current ground level.

Table 4-15 Flood Level of Bay of Bengal (m)

Catagony		Frequ	uency	
Category	10yr	20yr	50yr	100yr
Flood Level of Bay of Bengal	6.15	6.50	8.15	8.25

^{*}Source: Bangladesh Water Development (BWDB)

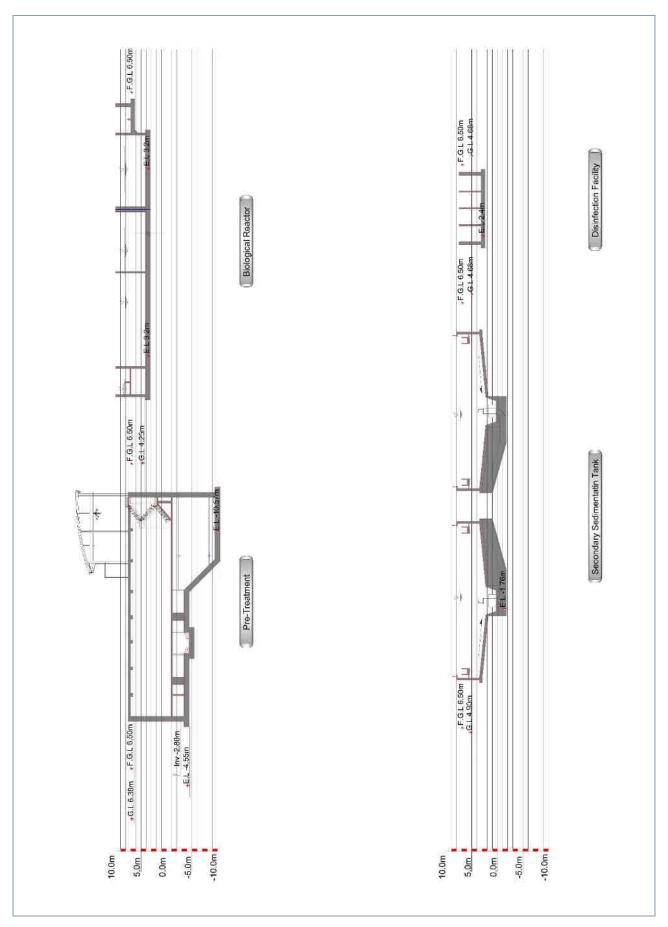


Figure 4-8 Hydraulic Profile of STP

4.2.3.6 Pre-treatment Facility

4.2.3.6.1 Function and Purpose

Sewage is expected to contain grits and sediments due to by-products discharged from homes or businesses and direct input of flush toilet water, so it should be removed before the main treatment process. Pre-treatment is for the removal of various impurities and sediments in the inflow sewage, and for stable supply and treatment of the subsequent treatment process, and includes the following facilities.

4.2.3.6.2 Facility

4.2.3.6.2.1 Screen

It is planned to install a coarse screen & fine screen to reduce potential operating and maintenance problems associated with rags and debris as a preliminary treatment step to protect pumps and downstream piping from potential damage or clogging.

4.2.3.6.2.2 Grit Removal

It is divided into gravity type, aeration type, and vortex type, and comprehensively reviewed treatment efficiency, installation cost, and ease of maintenance. The vortex type grit removal method was selected because it is applied to all on-going sewage projects of CWASA.

Table 4-16 Comparison of Grit Removal Methods

Category	Vortex	Aeration	Gravity
Figure		00° 00° 00° 00° 00° 00°	
Principle	Removal by centrifugal force and pressure difference between the outside and the center by generating vortex flow by the rotating cylinder.	A diffuser is installed to create swirling flow to separate and remove sediment by centrifugal force.	Sediment is removed by gravity sedimentation according to each size at a specific flow rate.
Main Facilities	Cylindrical Sediment Grit Separator Grit transport and Storage tank	Aeration and air supply deviceGrit removerGrit transport and Storage tank	Sediment remover Cleaning device Grit transport and Storage tank
Advantage	Excellent efficiency Minimize required area Floats can be removed	Cleaning and preliminary aeration effect Reduce smell of sediment	Loss of head is small Low installation cost Easy to maintain Excellent energy saving
Disadvantage	Requires a lift pump	Increase in Power cost Increase in VOC generation	Equipment is large
Select	•		

4.2.3.6.2.3 Equalization Tank

Depending on the characteristics of the project area, lifestyle, and the works return of the treatment process, it is expected that the characteristics of the influent wastewater quantity will vary greatly over time. In this case, since it affects the treatment efficiency and effluent quality of the subsequent process, equalization tank is planned to secure from load fluctuations and induce stable treatment efficiency through equalization.

4.2.3.6.2.4 Inlet Pumping Station

If there is no inlet pumping station, the depth of the structure should be low according to the depth of the sewer network, so the installation of the inlet pumping station prevents excessive earthwork (excavation) planning. For the pump facility, a plan was established for the number and capacity of pumps that can effectively cope with the inflow fluctuation, have excellent energy efficiency, and minimize energy consumption.

The pump head was determined by considering the invert elevation (depth of excavation) of the inflow sewage pipe, the planned height and discharge water level of the sewage treatment facility, and the head loss in the field.

4.2.3.7 Primary Sedimentation Tank

4.2.3.7.1 Function and Purpose

Primary treatment refers to sedimentation and removal of suspended solids present in the influent wastewater. The main reason to provide primary clarifiers is to reduce solids and organic loadings to the secondary biological treatment system, so it can then be smaller.

However, primary sedimentation presents several designs and operating challenges, including greater odour potential and the need for separate handling and treatment of primary sludge. Primary sludge treatment is most economically done using anaerobic digestion, which is a complicated, capital-intensive, and potentially hazardous process. For these reasons, many smaller treatment plants are designed without primary clarifiers, and rely instead on secondary biological treatment of the entire influent wastewater flow.

Primary sedimentation tank is planned to be introduced in Phase 2 with the sludge stabilization process in the consideration of the high concentration of organics in the raw sludge.

Actual O&M status of Phase 1 should be analyzed when the expansion of Phase 2 & Phase 3 of sewage treatment plant is implemented. Space is reserved in the STP (and plant hydraulic profile) to allow possible addition of primary sedimentation is the future with capacity to treat up to the ultimate influent wastewater flow.

4.2.3.7.2 Tank Type

The type of the sedimentation tank can be installed in a circular, rectangular type depending on the size of the sewage treatment plant, the site area and the overall layout of the facility. Short circuiting or localized currents should not be generated in the sedimentation tank. In this plan, a rectangular sedimentation tank was selected after comprehensively reviewing all conditions, such as site area, facility capacity, and future expandability.

Table 4-17 Comparison of Primary Sedimentation Tank Type

Category	Rectangular	Circular
Figure		
Removal Principle	Solid-liquid separation through gravitational settling of solid particles in horizontal flow	Solid-liquid separation through gravitational settling of solid particles in radial flow
Characteristic	 The required area is small and the systemization is easy Advantage for underground or upper cover Easy to installation odour collection facilities due to dense arrangement 	The required area is wide Complicated when underground or upper cover Complicated installation of odour collection facilities due to distributed arrangement
Efficiency	High and stable rectification effect with horizontal flow Deterioration of vertical flow, little effect from wind Long sludge collection time is concerned about bulking Easy to intensive sludge drawn pipe	With radial flow, it is vulnerable to channelling, density current, and wind influence. Possibility of fine particle leakage due to deterioration of vertical flow is high Relatively short sludge collection time Difficulty in integrating sludge drawn pipe
Maintenance	Comparatively complicated inspection of wear etc. The mechanical operation is complicated and there are many breakdowns	Easy access to maintenance such as wear Simple mechanical operation and less failure
Select	•	

4.2.3.8 Biological Reactor

4.2.3.8.1 Introduction

The Bangladesh Department of Environment (DoE) established the standard Sewerage discharge in 1997 and revised the standard in March 2023. Bangladesh mainly have regulated the removal of SS and BOD, COD contained in the wastewater and the discharge standards have been strengthened recently to remove T-N and T-P to prevent eutrophication in the public water body.

In the Catchment-1 project, which is under construction, a target effluent water quality was set up as stronger than the effluent standard. In this feasibility study, target effluent quality is set up as same as that of the Catchment-1 project in consultation with PMU, advanced wastewater treatment process is introduced to this project.

 Although the conventional activated sludge process mainly removes the organics, however nutrients such as T-N and T-P cannot be removed, so advanced treatment process is introduced as biological nutrient removal.

Treated effluent is discharged by gravity flow to the Madari Khal which is located about 0.5km from STP site and final receiving water body is Halda River. Even though impact of effluent will be negligible to the intake of WTP, because discharge point is about 7.6km away from the intake facility of Modunaghat WTP and about 11.5km away from the intake facility of Mohara WTP, advance treatment process is introduced to protect the raw water intake.

4.2.3.8.2 Classification of Advanced Treatment Process

Advanced treatment process that can simultaneously remove nitrogen and phosphorus to prevent eutrophication are classified into A2O, SBR, media, microorganism, and membrane.

Table 4-18 Classification of Advanced Treatment Process

Category	Description	Remarks
A2O	 It is composed of anaerobic, anoxic, and aerobic tanks. Many installation records and easy to operate 	
SBR	 Inlet, reaction, sedimentation, and discharge are performed in one reactor Strong against flow fluctuation and easy to operate. 	
Media	Keep MLSS high by media. Required area is small	
Microorganism	Treatment of sewage by culturing special microorganisms Few application cases and difficult maintenance.	
Membrane	 Solid-liquid separation with a membrane, secondary sedimentation is not required The composition of the bioreactor is similar to the A2O process Excellent effluent quality, high energy consumption 	

4.2.3.8.3 Sewage Treatment Plant in Korea adopting Advanced Treatment Process

4.2.3.8.3.1 Introduction

Ministry of Environment in Korea analyzes and inspects the O&M status of STP in Korea and announce the results in 2014. In this feasibility study, we analyzed the sewage treatment plants in Korea adopting Advanced Treatment Process as below.

4.2.3.8.3.2 Status of STP adopting Advanced Treatment Process

In 2014, there were 555 facilities operating with advanced treatment processes, an increase of 33 compared to 522 in 2013. Among the facilities operated with advanced treatment processes, SBR process was the most with 203 facilities (36.6%) and A2O process was the second with 135 facilities (24.3%).

Table 4-19 Status of STP adopting Advance Treatment Process

Ca	tegory	Total	SBR	A20	Media	Microorganism	Membrane	etc.
	Number	555	203	135	131	48	21	17
'14	Ratio (%)	100	36.6	24.3	23.6	8.6	3.8	3.1
	Number	522	192	133	123	37	21	16
'13	Ratio (%)	100	36.8	25.5	23.6	7.1	4.0	3.0

^{*}Source: Results of Analysis on O&M of Sewage Treatment Plants in 2014 (Ministry of Environment)

In the STP adopting advanced treatment process, SBR, A2O, and media process are the most. For facilities with a capacity of less than 10,000m³/d, SBR process was the most, and for facilities with a capacity of 10,000m³/d or more, A2O process was the most as below.

Table 4-20 Categorization of STP adopting Advanced Treatment Process with Capacity

	Capacity (m³/d, Daily Maximum)							
Category	Total	500 ~ 5,000	5,000 ~ 10,000	10,000 ~ 20,000	20,000 ~ 50,000	50,000 ~ 100,000	Over 100,000	
A20	134	32	19	18	28	11	26	
Media	129	46	21	14	19	10	19	
SBR	197	160	25	2	5	2	3	
Microorganism	21	5	3	6	4	2	1	
Membrane	40	27	4	7	-	1	1	
Long-term Aeration	25	17	4	2	1	1	-	
CAS	13	2	-	2	2	4	3	
etc.	7	1	2	3	1	-	-	
Total	566	290	78	54	60	31	53	

^{*}Source: Results of Analysis on O&M of Sewage Treatment Plants in 2014 (Ministry of Environment)

4.2.3.8.3.3 Unit O&M Cost of Advanced Treatment Process

As a result of O&M cost analysis of advanced treatment process, A2O process is 168.8 KRW/m³ (100%), SBR process is 283.8 KRW/m³ (168%), Media process is 176.1 KRW/m³ (104%), Membrane process is 416.4 KRW/m³ (247%), so A2O process is analyzed as the most economical in the advanced treatment process.

Table 4-21 Unit O&M Cost of Advanced Treatment Process

				Long-	Oxidatio	Rotating		Advanced	d Treatmen	t Process	
	Category	Total	CAS	term aeration	n ditch	disc	SBR	A20	Media	Membran e	etc.
	Number	587	10	3	13	6	203	135	131	48	38
1	Unit O&M Cost (KRW/m³)	186.2	134.6	910.5	624.8	318.7	283.8	168.8	176.1	416.4	323.4
4	Unit BOD Removal Cost (KRW/kg)	1,203.9	1,153.7	6,721.5	4,792.6	3,505.6	1,892.0	1,122.3	1,074.7	2,296.8	1,692.0
	Number	557	13	3	13	6	192	133	123	37	37
1	Unit O&M Cost (KRW/m³)	169.7	101.6	1,242.9	634.3	278.7	276.7	158.5	170.9	371.0	287.6
3	Unit BOD Removal Cost (KRW/kg)	1,145.0	882.8	10,064.1	5,488.1	3,983.7	1,953.5	1,076.8	1,066.3	2,095.0	1,587.5

^{*}Source: Results of Analysis on O&M of Sewage Treatment Plants in 2014 (Ministry of Environment)

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

The effluent water quality of the facilities with the advanced treatment method was better than the facilities with non-advanced, and the unit O&M cost and the operating manpower are higher than the facilities with non-advanced treatment process.

Table 4-22 Comparison of O&M Cost

		Effluent Water Quality					Treatment	BOD Removal	O&M Staff
	Category	BOD	SS	T-N	T-P	(1,000 m ³ /yr)	Cost (KRW/m³)	Cost (KRW/kg)	(person/ 1,000m³)
	Total	4.1	3.3	11.44	0.55	7,100,164	186.4	1,205.1	0.25
'14	Advanced	4.1	3.3	11.31	0.55	6,857,976	187.0	1,197.9	0.25
	Non-Advanced	4.4	3.7	14.75	0.61	242,188	165.5	1,423.3	0.30
	Total	4.5	3.6	11.15	0.65	7,189,377	169.7	1,145.0	0.23
'13	Advanced	4.2	3.4	10.91	0.55	6,301,545	177.9	1,163.2	0.24
	Non-Advanced	6.8	4.7	12.88	1.36	887,832	111.3	971.4	0.17

^{*}Source: Results of Analysis on Operation and Management of Sewage Treatment Plants in 2014 (Ministry of Environment)

4.2.3.8.3.4 Construction Cost

Ministry of Environment in Korea has established the functional formula with the data of operating sewage treatment plant to estimate the construction cost of sewage treatment process by sewage treatment process.

The construction cost calculated as a function formula is based on Korea construction standards and even though it is difficult to apply directly to this project, it was applied to analyze the construction cost for each advanced treatment process of this project. Since the facility capacity applied to the function formula is based on the daily maximum facility capacity, the construction cost was calculated by applying the facility capacity of the sewage treatment facility in this feasibility study as the daily maximum.

As a result of analysis, Construction cost of A2O process is 100%, SBR process is 97.5% and media process is 84.4%.

Table 4-23 Comparison of Construction Cost

Functional		Capacity	Ratio			
Category	Formula	(m³/d, Daily maximum)	Year 2010	Price Correction	Year 2023	(%)
A20	Y=97.804 x Q ^{0.5725}	75,000	60,441	124.70	75,370	100.0
SBR	Y=178.76 x Q ^{0.5165}	75,000	58,916	124.70	73,468	97.5
Media	Y=267.91 x Q ^{0.4676}	75,000	51,000	124.70	63,597	84.4

Note) Y: Construction Cost, Q: Capacity of STP (m³/d as daily max.)

4.2.3.8.4 Selection of Sewage Treatment Process

In this feasibility, A2O process is applied as sewage treatment process to remove T-N and T-P to prevent eutrophication in the public water body in the consideration of the legal standards, on-going sewage projects in Chattogram, construction cost and O&M cost, phase plan of sewage treatment plant.

Table 4-24 Comparison of Advanced Treatment Process

Category	A20	SBR	Media	Microorganism	Membrane
Introduction	Removal of phosphorus by denitrification of the returned sludge based on the A2O method	Inflow, reaction, precipitation, and discharge proceed in one reactor	Responds to high- concentration sewage with high MLSS and long SRT using medias	Sewage treatment and odour removal by culturing special microorganisms	Installation of a membrane in an aerobic tank instead of a secondary sedimentation
Characteristic	Composed of anaerobic, anoxic and aerobic Internal sludge return Secondary sedimentation	Performs anaerobic, anoxic, aerobic, and sedimentation roles in one reactor Floating microorganisms No secondary sedimentation No internal sludge return	It is composed of anaerobic, anoxic, and aerobic tanks and is filled with a media. Floating + adhesiveness microorganisms Internal sludge return	Removal of nitrogen and phosphorus by dividing the aeration tank or intermittent aeration Sewage treatment and odour removal by microorganisms	Depending on the type of separator, hollow fiber membranes and flat membranes are largely used. Requires backwashing and chemical cleaning
Advantage	Suitable for large treatment plants Many domestic and overseas operation records	It is suitable for small-scale treatment plants because it requires less land and has good ability to cope with changes in flow rate and water quality. Easy to secure technology due to many operational achievements Compared to other methods, facility cost and power cost are low	Excellent adaptability to changes in flow rate and water quality by using high-concentration microorganisms Less sludge generation Less land area required than A2O method	Odour removal without separate facility Good response to flow rate and water quality change Improvement of sludge dewatering	Good response to flow rate and water quality change
Disadvantage	Inhibition of phosphorus release in the anaerobic tank Need to internal sludge return	 A flow control tank or a treatment tank is required due to intermittent inflow and outflow Difficulty in repair and replacement if major equipment is foreign-made 	High initial cost Need to replace filter media Difficult to remove phosphorus due to long SRT It is difficult to manage filter media	Microorganism culture takes a lot of time Need periodic maintenance	Membrane replacement cost
Chattogram application case	Catchment-1&5&6 Catchment-2&4	-	-	-	-
Construction Cost	100%	97.5%	84.4%	-	-
O&M Cost	100%	168%	104%	-	247%
Selection	•				

4.2.3.9 Secondary Sedimentation Tank

4.2.3.9.1 Function

The function of secondary sedimentation is to separate the activated sludge solids from the mixed liquor. Solid separation is the final step in the production of a stable effluent low in BOD and SS.

4.2.3.9.2 Tank Type

In this feasibility study, circular type is applied to second sedimentation tank because activated sludge after biological nutrient removal usually shows a low sedimentation characteristic due to the long SRT and high MLSS concentration.

Table 4-25 Comparison of Secondary Sedimentation Tank Type

Category	Rectangular	Circular
Figure		
Removal Principle	Solid-liquid separation through gravitational settling of solid particles in horizontal flow	Solid-liquid separation through gravitational settling of solid particles in radial flow
Characteristic	 The required area is small and the systemization is easy Advantage for underground or upper cover Easy to installation odour collection facilities due to dense arrangement 	The required area is wide Complicated when underground or upper cover Complicated installation of odour collection facilities due to distributed arrangement
Efficiency	High and stable rectification effect with horizontal flow Deterioration of vertical flow, little effect from wind Long sludge collection time is concerned about bulking Easy to intensive sludge drawn pipe	With radial flow, it is vulnerable to channelling, density current, and wind influence. Possibility of fine particle leakage due to deterioration of vertical flow is high Relatively short sludge collection time Difficulty in integrating sludge drawn pipe
Maintenance	Comparatively complicated inspection of wear etc. The mechanical operation is complicated and there are many breakdowns	Easy access to maintenance such as wear Simple mechanical operation and less failure
Select		•

4.2.3.10 Disinfection Facility

Disinfection refers to the selective destruction of disease-causing organisms. In this feasibility study, chlorine disinfection is applied which is generally more cost effective than other commonly used technologies, such as use of ozone, chlorine dioxide, hydrogen peroxide, or ultraviolet (UV) light and it can respond to the high turbidity of influent wastewater.

Table 4-26 Comparison of Disinfection

Category	Chlorine	Ozone	UV
Scale	All	Large, Medium	Medium, Small
Application Phase	All	Secondary	Secondary
Reliability	Good	Very Good	Very Good
Bacteria Killing	Good	Good	Good
Virus Killing	Bad	Good	Good
Toxicity	Toxic	No possibility	Non-toxic
Hazardous by-products	THM	Aldehyde	-
Persistent	Long	-	-
Contact Time	Normal (10~20 min)	Normal (10~20 min)	Short (1~5 second)
Dissolved Oxygen Contribution	-	Contributed	-
React with ammonia	Reaction	Reaction (High pH only)	No Reaction
Chromaticity Removal	Normal	Removed	Not removed
Increased dissolved solids	Increase	Increase	Not Increased
Effect on pH	Yes	Yes (High pH)	No
Maintenance	Least	High	Normal
Causticity	Yes	Yes	No
Select	•		

4.2.3.11 Treated Effluent Discharge

4.2.3.11.1 Introduction

As the proposed site of sewage treatment plant is located in the middle of the CCC, option study of treated effluent discharge is presented to identify more rational and suitable option.

- Option-1: treated effluent is discharged by gravity flow to the Madari Khal which is located about 0.5km from STP site and final receiving water body is Halda River.
- Option-2: treated effluent is discharged by pumping to the Shitol Jharna Khal which is located about
 7.0km from STP site and final receiving water body is Karnaphuli River.

4.2.3.11.2 Treated Effluent Discharge Plan

As a result of the option study, Option-1 is selected for the treated effluent discharge option through the discussion with the CWASA by considering the site condition, financial and other factors. It is planned to obtain the environmental license through the environmental impact assessment during the detailed design stage.

- CAPEX and OPEX of Option-2 is much higher than Option-1, because additional effluent pumping station & about 7.0km of effluent discharge pipe is required for the Option-2 and OPEX is also required to operate a pumping station.
- Treated effluent will satisfy the standard sewerage discharge of DOE, so it will contribute to improve the water quality of river and to preserve the ecosystem of river.
- Treated effluent discharge point of STP in Madari Khal is about 7.6km away from the intake facility of Modunaghat WTP and about 11.5km away from the intake facility of Mohara WTP, so the impact of effluent will be negligible to the intake of WTP. For instance, 4.0km of standard distance from the intake of WTP is considered when designating a water source protection area in Korea.

Table 4-27 Option of Treated Effluent Discharge

Category	Option-1	Option-2
Discharge Point	Madari Khal	Shitol Jharna Khal
Receiving Water Body	Halda River	Karnaphuli River
Discharge Pipe	D1000mm, L=0.5km	D1000mm, L=7.0km
Effluent Pumping Station	-	26.1 m³/min x 2(1) + 13.0 m³/min x 2
CAPEX	Discharge Pipe: 385,175 USD	 Discharge Pipe: 5,392,000 USD Discharge Pump Station: 1,563,000 USD Total: 6,955,000 USD
OPEX	-	Electricity Cost: 200,000 USD/year
Selection	•	

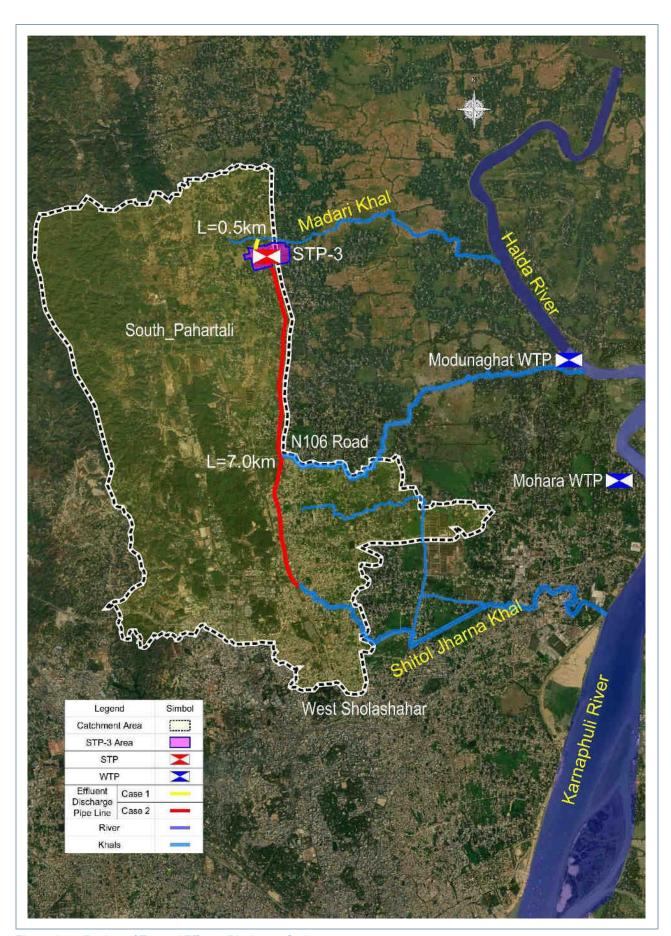


Figure 4-9 Review of Treated Effluent Discharge Options

4.2.3.11.3 Water Quality Prediction

4.2.3.11.3.1 Flow Rate of Halda River

In the Modunaghat water treatment plant design report, the future flow rate was predicted based on the Halda River flow rate from 2001 to 2014. Based on the dry season with the lowest river flow, the 50% probability flow rate was 645m³/s and the 90% probability flow rate was 359m³/s from November to May. In February, when the river flow rate was the lowest, the 50% probability flow rate was 576 m³/s and the 90% probability flow rate was 300 m³/s.

As of 2040, the target year for the first stage of this project, the daily average flow rate of sewage treatment facilities is 55,574m³/d, which is only 0.23% of the 25,920,000m³/d in February, the lowest river flow. Therefore, it is judged that there will be little impact on the Halda River due to discharge water.

Table 4-28 Halda river flow rate prediction

Catamami	50% probabi	lity flow rate	90% probability flow rate	
Category	m³/s	m³/d	m³/s	m³/d
Dry season (Nov to May)	654	55,728,000	359	31,017,600
Feb	576	49,766,400	300	25,920,000
Mar	599	51,753,600	299	25,833,600
Apr	639	55,209,600	322	27,820,800

^{*}Source: Design Report of Feasibility Study, Design and Construction Supervision of Modunaghat WTP (CWASA)

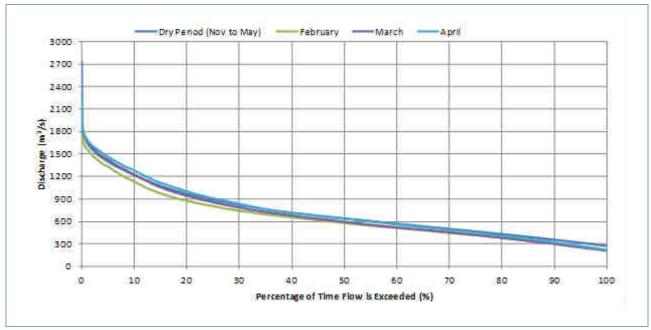


Figure 4-10 Halda river flow rate prediction

^{*}Source: Design Report of Feasibility Study, Design and Construction Supervision of Modunaghat WTP (CWASA)

4.2.3.11.3.2 Water Quality Status

The water quality status of the Halda River was analyzed based on raw water quality data from the Modunaghat and Mohara water purification plants located downstream.

As a result of raw water quality analysis, most of the water quality items were found to be constant throughout the year, and turbidity increased in the dry season, the river level decreased, and the sea current reversed, resulting in high chloride ion concentration.

Table 4-29 Modunaghat WTP raw water

Year	рН		Turbidity (NTU)		T-Alka (mç		T-Hard (mg		Ca-Hardness (mg/L)	
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
2020	6.78	7.21	60.83	525.00	40.50	60.33	48.42	64.17	42.00	65.83
2021	6.95	7.38	30.00	630.00	32.00	58.00	49.00	70.00	52.00	74.00
2022	6.96	7.31	73.33	653.33	34.56	49.33	41.67	54.78	19.22	25.44
Average	6.90	7.30	54.72	602.78	35.69	55.89	46.36	62.98	37.74	55.09
Year	TDS		DO (mg/L)		BOD (mg/L)		COD (mg/L)		Chloride (mg/L)	
			(111)	タ/ ┗/	(111)	∛∟)	(m)	J/ ┗)	(mg	/L)
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
2020	Min. 50.42	Max. 316.08								
2020			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	50.42	316.08	Min. 5.61	Max. 6.77	Min. 0.86	Max. 1.53	Min. 23.92	Max. 36.33	Min. 13.92	Max. 186.50

Table 4-30 Mohara WTP raw water

Table 4-30	ivionara	WIP rav	v water									
Year	рН			Turbidity (NTU)		T-Alkalinity (mg/L)		T-Hardness (mg/L)		TDS (mg/L)		NO₃ (mg/L)
	Min.	Max.	Min.	Max.	Min.	Max.	. Min	. Max.	Min.	Max.	(mg/L)	(IIIg/L)
2020	6.88	7.26	75.83	288.75	47.42	60.2	5 41.0	49.00	37.58	675.00	0.22	3.59
2021	6.86	7.19	91.67	487.92	46.50	55.4	2 36.3	33 42.92	39.58	1,531.67	0.34	2.72
2022	6.79	7.13	72.78	374.44	43.67	54.0	0 33.7	'8 41.22	34.33	453.56	0.19	3.37
Average	6.84	7.19	80.09	383.70	45.86	56.5	6 37.0	6 44.38	37.17	886.74	0.25	3.23
Year	PO ₄ (mg/L)	SO ₄ (mg/L)	NH ₃		DO (mg/L)		BOD (mg/L)		COD (mg/L)		Chloride (mg/L)	
			(mg/L	-) Mir	n. M	ax.	Min.	Max.	Min.	Max.	Min.	Max.
2020	0.29	15.83	0.1	16 6	.28	6.83	1.00	1.33	20.92	31.83	9.00	407.83
2021	0.26	18.08	0.1	14 6	.63	7.25	1.00	1.16	20.75	29.92	10.67	920.50
2022	0.36	16.56	0.1	17 6	.59	7.19	0.98	1.14	20.00	29.56	7.33	261.44
Average	0.30	16.82	0.1	15 6	.50	7.09	0.99	1.21	20.56	30.44	9.00	529.93

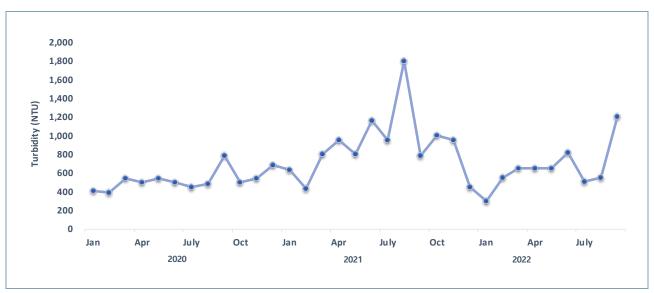


Figure 4-11 Modunaghat WTP Turbidity

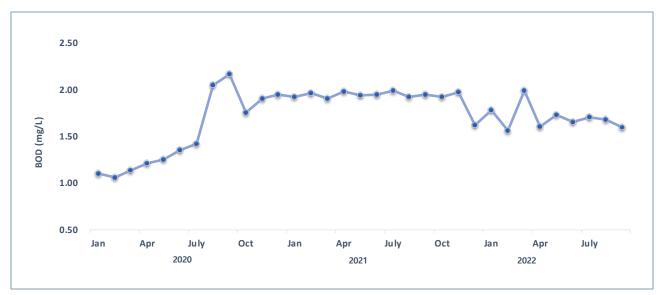


Figure 4-12 Modunaghat WTP BOD

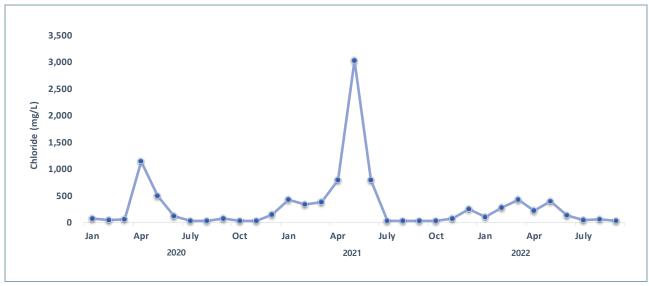


Figure 4-13 Modunaghat WTP Chloride

Figure 4-14 Mohara WTP Turbidity

Figure 4-15 Mohara WTP BOD

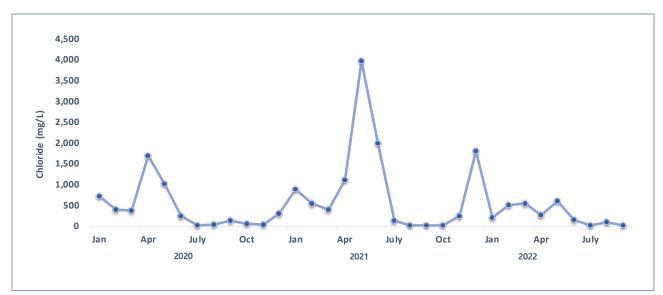


Figure 4-16 Mohara WTP BOD

Table 4-31 Modunaghat WTP raw water (2020 year)

2020	рН			Turbidity (NTU)		T-Alkalinity (mg/L)		T-Hardness (mg/L)		Ca-Hardness (mg/L)	
Year	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Jan	6.95	7.30	40	410	48	66	52	64	30	69	
Feb	6.90	7.35	29	387	48	63	51	70	34	65	
Mar	6.84	7.26	36	540	45	61	53	67	31	60	
Apr	6.88	7.29	40	495	50	65	57	72	37	67	
May	6.80	7.25	25	538	54	68	55	75	35	65	
Jun	6.80	7.25	90	500	47	60	50	68	42	70	
July	6.59	7.21	100	450	32	50	45	58	45	69	
Aug	6.78	7.06	90	480	38	60	42	55	40	64	
Sep	6.75	7.13	100	780	34	64	46	58	59	68	
Oct	6.69	6.99	60	500	27	52	42	58	45	60	
Nov	6.65	7.10	60	540	38	62	40	65	52	65	
Dec	6.76	7.31	60	680	25	53	48	60	54	68	
2020	TC)S	D		ВС		CC		Chlo		
Year			(mg/L)		(mg		(mg		(mg		
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Jan	64	192	5.20	6.10	0.95	1.10	17	21	19	64	
Feb	62	107	5.20	6.90	0.82	1.06	18	21	19	47	
Mar	54	96	5.40	7.10	0.84	1.13	9	24	29	62	
Apr	54	1524	5.80	7.15	0.92	1.21	17	29	27	1138	
May	50	^-^	0.00	7 00	~ ~ =	4.05	22	35	12	500	
		879	6.20	7.30	0.85	1.25					
Jun	40	198	6.20	6.70	0.85	1.35	25	40	10	120	
Jun July							25 29				
	40	198	6.20	6.70	0.80	1.35	25	40	10	120	
July	40 54	198 85	6.20 5.30	6.70 6.30	0.80 0.92	1.35 1.42	25 29	40 45	10 8	120 25	
July Aug	40 54 48	198 85 69	6.20 5.30 5.50	6.70 6.30 6.80	0.80 0.92 0.95	1.35 1.42 2.05	25 29 35	40 45 49	10 8 8	120 25 22	
July Aug Sep	40 54 48 52	198 85 69 129	6.20 5.30 5.50 5.20	6.70 6.30 6.80 6.90	0.80 0.92 0.95 0.85	1.35 1.42 2.05 2.16	25 29 35 32	40 45 49 55	10 8 8 9	120 25 22 65	

Table 4-32 Modunaghat WTP raw water (2021 year)

14510 1 02	oz modanagnat vvi rav vator (2021 your)									
2021	pl	рН		Turbidity (NTU)		alinity g/L)	T-Hardness (mg/L)		Ca-Hardness (mg/L)	
Year	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Jan	6.95	7.38	30	630	32	58	49	70	52	74
Feb	6.98	7.32	35	430	46	52	46	50	17	20
Mar	7.12	7.35	40	800	45	58	42	65	20	28
Apr	6.99	7.45	35	950	42	56	45	52	18	22
May	7.05	7.34	85	800	38	55	42	72	20	35
Jun	6.88	7.27	140	1165	30	45	45	58	18	25
July	6.82	7.23	85	955	30	53	42	55	22	26
Aug	6.92	7.30	90	1800	38	52	45	50	20	24
Sep	6.97	7.27	100	780	38	60	45	59	25	31
Oct	6.95	7.28	30	1000	33	48	42	54	22	29
Nov	6.95	7.27	30	950	38	60	45	56	25	28
Dec	7.03	7.28	40	450	36	64	42	61	20	25

2021	Voor		D (mg		BOD (mg/L)		COD (mg/L)		Chloride (mg/L)	
rear	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Jan	76	650	6.98	7.32	0.77	1.92	25	41	35	425
Feb	35	510	7.02	7.19	0.75	1.96	28	45	15	329
Mar	68	726	7.10	7.26	0.73	1.90	25	43	25	370
Apr	30	1975	7.05	7.20	0.80	1.98	24	48	16	785
May	81	5150	7.05	7.16	0.75	1.94	25	52	36	3025
Jun	65	1320	7.01	7.15	0.78	1.95	24	46	20	780
July	19	59	6.92	7.13	0.75	1.99	27	58	7	32
Aug	15	69	6.90	7.08	0.68	1.92	25	48	7	20
Sep	25	65	6.88	7.10	0.78	1.95	25	56	9	20
Oct	30	62	6.81	6.99	0.75	1.92	28	55	8	20
Nov	30	130	6.65	7.13	0.75	1.97	25	53	9	75
Dec	30	893	6.81	7.10	0.59	1.62	18	32	9	250

Table 4-33 Modunaghat WTP raw water (2022 year)

Table 4-33	wodunag	nat wip ra	w water (20	022 year)						
2022	р	Н		idity	T-Alka			dness	Ca-Har	
Year			(NT		(mg			g/L)	(mg	
Tear	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Jan	7.04	7.29	40	300	38	50	45	60	22	28
Feb	7.01	7.30	45	550	37	51	42	58	20	24
Mar	7.02	7.29	45	650	36	51	45	55	22	29
Apr	6.97	7.38	60	650	36	51	44	58	20	28
May	7.01	7.31	85	650	44	52	42	53	18	25
Jun	6.95	7.33	90	820	34	50	42	55	20	24
July	6.87	7.29	100	510	30	49	36	52	16	23
Aug	6.91	7.29	110	550	30	48	40	52	19	25
Sep	6.85	7.30	85	1200	26	42	39	50	16	23
Oct	-	-	-	-	-	-	-	-	-	-
Nov	-	-	-	-	-	-	-	-	-	-
Dec	_	_	_	_	_	-	_	-	_	_
DCC	_	_		_	_				_	
			D		ВС	D	CC)D	Chlo	
2022	TC	os	D (mg	J/L)	(mg	DD ı/L)	CC (mg	OD g/L)	(mg	J/L)
	TC Min.	OS Max.	D (mg Min.	J/L) Max.	(mg Min.	DD /L) Max.	CC (mç Min.	DD g/L) Max.	(mg Min.	ı/L) Max.
2022 Year Jan	TE Min. 30	Max. 160	D (mg Min. 6.80	n/L) Max. 6.95	(mg Min. 0.65	DD /L) Max. 1.78	CC (mg Min. 20	DD g/L) Max. 38	(mç Min. 17	n/L) Max. 96
2022 Year	TE Min. 30 25	OS Max.	Di (mg Min. 6.80 6.49	Max. 6.95 6.95	(mg Min.)D /L) Max. 1.78 1.56	CC (mg Min. 20 24	DD g/L) Max. 38	(mg Min.	y/L) Max. 96 270
2022 Year Jan	Min. 30 25 34	Max. 160	D (mg Min. 6.80	n/L) Max. 6.95	(mg Min. 0.65	DD /L) Max. 1.78	Min. 20 24 22	DD g/L) Max. 38	(mç Min. 17	Max. 96 270 425
2022 Year Jan Feb	TE Min. 30 25	Max. 160 750	Di (mg Min. 6.80 6.49	Max. 6.95 6.95	(mg Min. 0.65 0.68)D /L) Max. 1.78 1.56	CC (mg Min. 20 24	DD g/L) Max. 38	(mç Min. 17 12	y/L) Max. 96 270
2022 Year Jan Feb Mar	Min. 30 25 34	Max. 160 750 708	Min. 6.80 6.49 6.59	Max. 6.95 6.95 6.73	(mg Min. 0.65 0.68 0.78	Max. 1.78 1.56 1.99	Min. 20 24 22	0D g/L) Max. 38 36 47	(mg Min. 17 12 20 14 18	Max. 96 270 425
2022 Year Jan Feb Mar Apr	Min. 30 25 34 25	Max. 160 750 708 348	Min. 6.80 6.49 6.59 6.46	Max. 6.95 6.95 6.73 6.75	(mg Min. 0.65 0.68 0.78	Max. 1.78 1.56 1.99	Min. 20 24 22 28	Max. 38 36 47	(mg Min. 17 12 20 14	Max. 96 270 425 209
Jan Feb Mar Apr May	Min. 30 25 34 25 33	Max. 160 750 708 348 828	Min. 6.80 6.49 6.59 6.46 6.19	Max. 6.95 6.95 6.73 6.75 6.41	(mg Min. 0.65 0.68 0.78 0.58	Max. 1.78 1.56 1.99 1.60 1.73	Min. 20 24 22 28 30	Max. 38 36 47 44	(mg Min. 17 12 20 14 18	Max. 96 270 425 209
Jan Feb Mar Apr May Jun	Min. 30 25 34 25 33 26	Max. 160 750 708 348 828 256	Min. 6.80 6.49 6.59 6.46 6.19 6.05	Max. 6.95 6.95 6.73 6.75 6.41 6.38	(mg Min. 0.65 0.68 0.78 0.58 0.50	Max. 1.78 1.56 1.99 1.60 1.73	Min. 20 24 22 28 30 30	Max. 38 36 47 44 49	(mg Min. 17 12 20 14 18 14	Max. 96 270 425 209 390 133
Jan Feb Mar Apr May Jun July	Min. 30 25 34 25 33 26 27	Max. 160 750 708 348 828 256 90	Min. 6.80 6.49 6.59 6.46 6.19 6.05 6.01	Max. 6.95 6.95 6.73 6.75 6.41 6.38 6.18	(mg Min. 0.65 0.68 0.78 0.58 0.50 0.54	Max. 1.78 1.56 1.99 1.60 1.73 1.65 1.70	Min. 20 24 22 28 30 30 35	Max. 38 36 47 44 49 42 52	(mg Min. 17 12 20 14 18 14	Max. 96 270 425 209 390 133 36
Jan Feb Mar Apr May Jun July Aug	Min. 30 25 34 25 33 26 27 22	Max. 160 750 708 348 828 256 90 75	Min. 6.80 6.49 6.59 6.46 6.19 6.05 6.01	Max. 6.95 6.95 6.73 6.75 6.41 6.38 6.18 6.12	(mg Min. 0.65 0.68 0.78 0.58 0.50 0.54 0.55 0.55	Max. 1.78 1.56 1.99 1.60 1.73 1.65 1.70 1.68	Min. 20 24 22 28 30 30 35 32	Max. 38 36 47 44 49 42 52 49	(mg Min. 17 12 20 14 18 14 11	Max. 96 270 425 209 390 133 36 48
Jan Feb Mar Apr May Jun July Aug Sep	Min. 30 25 34 25 33 26 27 22 26	Max. 160 750 708 348 828 256 90 75 75	Min. 6.80 6.49 6.59 6.46 6.19 6.05 6.01 6.01 5.87	Max. 6.95 6.95 6.73 6.75 6.41 6.38 6.18 6.12	(mg Min. 0.65 0.68 0.78 0.58 0.50 0.54 0.55 0.55	Max. 1.78 1.56 1.99 1.60 1.73 1.65 1.70 1.68	Min. 20 24 22 28 30 30 35 32	Max. 38 36 47 44 49 42 52 49	(mg Min. 17 12 20 14 18 14 11	Max. 96 270 425 209 390 133 36 48

Table 4-34 Mohara WTP raw water (2020 year)

2020	рН	ł	Turbic (NTL		T-Alka (mg	alinity g/L)		rdness ng/L)		DS ng/L)	Iron	NO ₃
Year	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	(mg/L)	(mg/L)
Jan	7.29	7.39	90	280	52	80	50	66	36	1,120	0.33	3.7
Feb	7.15	7.35	70	230	56	60	40	46	46	650	0.23	3.3
Mar	7.14	7.35	80	280	50	64	40	44	41	600	0.14	3.9
Apr	7.10	7.33	60	280	52	64	36	42	35	2,800	0.15	4.0
May	7.02	7.28	80	300	50	60	36	47	45	1,620	0.17	3.8
Jun	6.99	7.24	70	230	50	58	48	56	36	415	0.21	3.6
July	6.5	7.17	80	280	43	57	35	46	34	45	0.25	3.9
Aug	6.63	7.04	120	280	43	54	54	58	38	46	0.13	3.3
Sep	6.53	7.29	80	370	42	56	34	46	33	200	0.43	2.4
Oct	6.69	7.12	70	300	40	56	42	48	35	68	0.20	2.3
Nov	6.74	7.26	50	170	43	58	40	45	38	56	0.16	6.5
Dec	6.80	7.28	60	465	48	56	38	44	34	480	0.25	2.4
2020	PO ₄	SO ₄	NH₃		DO		ВОГ		CO		Chlo	
Year	(mg/L)	(mg/L)	(mg/L)	M:	(mg/L)		(mg/l		(mg		(mg	
la a				Min			Min.	Max.	Min.	Max.	Min.	Max.
Jan	0.46	25	0.18		6.3	6.9	1.0	1.4	22	35	8	700
Feb	0.26	14	0.21		6.4	6.8	1.0	1.4	20	32	12	390
Mar	0.32	13	0.10		6.6	7.0	1.0	1.2	18	30	10	360
Apr	0.38	16	0.10		6.2	6.7	1.0	1.4	18	30		1,680
May	0.41	18	0.13	_	6.5	7.0	1.0	1.3	20	34	15 8	1,000
Jun	0.37	20	0.25	_	6.1 6.3	6.7	1.0	1.5	22	32	8	240
July	0.30	19	0.18			6.8	1.0	1.3	20	32		19
Aug	0.32	15	0.20		6.1	6.6	1.0	1.4	22	30	8	25
Sep	0.18	14	0.15		6.0	6.5	1.0	1.3	20	32		120
Oct	0.21	14	0.16		6.2	6.8	1.0	1.4	24	33	8	40
Nov	0.14 0.13	10	0.10		6.0	6.3	1.0	1.2	20	30	7	30
Dec	1 0.13	12	0.10) (6.7	7.8	1.0	1.1	25	32	8	290

Table 4-35 Mohara WTP raw water (2021 year)

Table 4-00	Worldie	* * * * * * * * * * * * * * * * * * *	w water (2021 900	'' /							
2021 Year	p	Н	Turb (N)		T-Alka (mg		T-Hard (mg			DS g/L)	Iron	NO ₃
Teal	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	(mg/L)	(mg/L)
Jan	7.01	7.42	120	420	50	59	38	46	48	1,450	0.15	2.8
Feb	7.02	7.29	80	420	50	58	36	45	41	900	0.14	3.5
Mar	7.02	7.27	60	350	50	56	36	40	38	635	0.12	3.1
Apr	7.00	7.28	60	410	50	58	36	38	40	1,820	0.14	1.5
May	7.00	7.25	140	560	51	58	48	62	58	6,500	0.21	1.6
Jun	6.67	7.24	120	500	44	56	45	60	36	3,300	0.18	1.7
July	6.71	7.12	140	470	42	53	45	48	35	210	1.2	4.1
Aug	6.45	6.98	140	775	44	51	32	38	38	48	1.03	3.1
Sep	6.68	7.04	80	380	44	52	30	34	33	45	0.31	3.6
Oct	6.98	7.10	60	310	41	54	28	32	38	47	0.16	3.5
Nov	7.02	7.16	50	360	47	55	32	36	34	425	0.13	1.9
Dec	6.70	7.14	50	900	45	55	30	36	36	3,000	0.35	2.2

2021	PO ₄	SO ₄	NH ₃	D (mg		BC (mg			OD g/L)	Chlo (mg	
Year	(mg/L)	(mg/L)	(mg/L)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Jan	0.17	18	0.08	6.8	7.9	1.0	1.1	24	30	20	870
Feb	0.18	17	0.08	7.2	7.8	1.0	1.1	22	32	16	540
Mar	0.16	15	0.10	7.5	7.9	1.0	1.1	18	28	8	380
Apr	0.10	11	0.11	7.2	8.1	1.0	1.1	19	30	12	1,100
May	0.28	35	0.16	5.5	6.1	1.0	1.2	25	38	20	3,960
Jun	0.18	38	0.14	5.8	6.4	1.0	1.1	22	34	8	1,980
July	0.41	18	0.15	6.0	6.1	1.0	1.2	25	32	8	120
Aug	0.47	14	0.21	6.5	6.9	1.0	1.3	22	30	7	20
Sep	0.41	13	0.25	6.8	7.3	1.0	1.2	18	26	7	17
Oct	0.26	14	0.17	6.9	7.5	1.0	1.1	18	28	7	19
Nov	0.17	12	0.10	7.4	8.2	1.0	1.2	18	27	7	240
Dec	0.32	12	0.11	5.9	6.8	1.0	1.2	18	24	8	1,800

Table 4-36 Mohara WTP raw water (2022 year)

Table 4-36	ivionara	WIP rav			,							
2022	pl	4		idity		alinity		rdness		TDS .	Iron	NO ₃
Year			(NT		(mg			g/L)		ng/L)	(mg/L)	(mg/L)
Tour	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	(1119/11)	(1119/11)
Jan	6.81	7.08	60	240	42	52	32	36	35	365	0.30	4.9
Feb	6.82	7.14	60	380	44	52	32	43	36	860	0.13	4.1
Mar	6.87	7.20	60	350	44	54	32	42	42	940	0.18	4.1
Apr	6.80	7.10	65	380	45	56	35	42	34	416	0.13	2.2
May	6.85	7.15	90	400	43	54	35	40	35	1020	0.22	3.3
Jun	6.71	7.17	80	500	44	55	35	44	33	265	0.15	2.4
July	6.75	7.10	70	350	43	52	40	46	33	48	0.15	3.6
Aug	6.81	7.09	80	370	44	57	33	42	33	132	0.16	2.3
Sep	6.70	7.12	90	400	44	54	30	36	28	36	0.26	3.4
Oct	-	-	-	-	-	-	-	-	-	-	-	-
Nov	-	-	-	-	-	-	-	-	-	-	-	-
Dec	-	-	-	-	-	-	-	-	-	-	-	-
2022	PO ₄	SO ₄	NH ₃		DO		BOD		CC		Chlo	
Year	(mg/L)	(mg/L)			(mg/L)		(mg/L		(mg		(mg	
				IVIII			Min.	Max.	Min.	Max.	Min.	Max.
Jan	0.23	12			6.3	6.5	1.0	1.2	18	22	8	200
Feb	0.24	16			7.6	8.1	1.0	1.1	20	28	8	500
Mar	0.36	22			6.5	7.4	1.0	1.2	22	28	10	540
Apr	0.28	15		_	7.1	7.5	0.93	1.0	18	26	8	250
May	0.32											COO
		18			6.5	7.2	0.94	1.1	18	32	8	600
Jun	0.45	17	0.1	8	6.3	6.9	0.95	1.1	18	32	6	150
July	0.45 0.48	17 14	7 0.1 4 0.2	8 (8	6.3 6.6	6.9 7.4	0.95 1.0	1.1 1.1	18 22	32 30	6	150 19
July Aug	0.45 0.48 0.43	17 14 18	7 0.1 4 0.2 3 0.2	8 (28 (24 (6.3 6.6 6.2	6.9 7.4 6.8	0.95 1.0 1.0	1.1 1.1 1.4	18 22 24	32 30 36	6 6 6	150 19 80
July Aug Sep	0.45 0.48	17 14	7 0.1 4 0.2 3 0.2	8 (28 (24 (6.3 6.6	6.9 7.4	0.95 1.0	1.1 1.1	18 22	32 30	6	150 19
July Aug Sep Oct	0.45 0.48 0.43	17 14 18 17	7 0.1 4 0.2 3 0.2	8 (28 (24 (6.3 6.6 6.2	6.9 7.4 6.8	0.95 1.0 1.0	1.1 1.1 1.4	18 22 24	32 30 36	6 6 6	150 19 80
July Aug Sep	0.45 0.48 0.43 0.47	17 14 18 17	7 0.1 4 0.2 3 0.2 7 0.2	8 (28 (24 (23 (23 (24 (23 (24 (24 (24 (24 (24 (24 (24 (24 (24 (24	6.3 6.6 6.2 6.2	6.9 7.4 6.8 6.9	0.95 1.0 1.0 1.0	1.1 1.1 1.4 1.1	18 22 24	32 30 36 32	6 6 6	150 19 80

4.2.3.11.3.3 Water Quality Prediction

Based on the final target year of 2070, the water quality of the Halda River is predicted to be able to maintain BOD of 2.07mg/L and SS of 0.14mg/L. Therefore, it is judged that there is only minor effect to the Halda River due to the discharge of treated effluent.

Table 4-37 Prediction of Halda River water quality according to sewage treatment

	Category		Unit	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)
	Тс	otal	m³/d	25,960,612	25,975,574	26,003,876	26,039,842
Flow	Halda	a River	m³/d	25,920,000	25,920,000	25,920,000	25,920,000
	Fatehal	oad STP	m³/d	40,612	55,574	83,876	119,842
		BOD	kg/d	64,660.80	69,478.80	78,594.80	90,176.80
		COD	kg/d	1,477,680.00	1,487,317.00	1,505,547.00	1,528,712.00
	Untreated	SS	kg/d	15,696.00	21,478.00	32,416.00	46,315.00
		T-N	kg/d	3,106.00	4,251.00	6,416.00	9,167.00
Load		T-P	kg/d	589.00	805.00	1,216.00	1,737.00
Load		BOD	kg/d	52,393.04	52,692.28	53,258.32	53,977.64
		COD	kg/d	1,455,581.20	1,457,077.40	1,459,907.60	1,463,504.20
	Treated	SS	kg/d	1,218.36	1,667.22	2,516.28	3,595.26
		T-N	kg/d	1,624.48	2,222.96	3,355.04	4,793.68
		T-P	kg/d	406.12	555.74	838.76	1,198.42
		BOD	mg/L	2.49	2.67	3.02	3.46
		COD	mg/L	56.92	57.26	57.90	58.71
	Untreated	SS	mg/L	0.60	0.83	1.25	1.78
		T-N	mg/L	0.12	0.16	0.25	0.35
Water		T-P	mg/L	0.02	0.03	0.05	0.07
Quality		BOD	mg/L	2.02	2.03	2.05	2.07
		COD	mg/L	56.07	56.09	56.14	56.20
	Treated	SS	mg/L	0.05	0.06	0.10	0.14
		T-N	mg/L	0.06	0.09	0.13	0.18
		T-P	mg/L	0.02	0.02	0.03	0.05

4.2.3.11.4 Case Study of Korea

4.2.3.11.4.1 Water Source Protection area

The Ministry of Environment has established management rules for the purpose of preserving the water quality of water supply sources, and the designation standards for each water source are as follows.

Table 4-38 Designation Standard of Water Source

Category	Designation standard
Stream and Riverbed water	 The standard distance is 4 km from the water intake point. The standard distance can be increased or decreased according to the standard distance adjustment standard rating table, taking into account water pollution conditions, water intake, water intake rate, and development potential of the surrounding area. The width of the protection area shall be the catchment area, but the area where rainwater, sewage or wastewater does not flow directly into the water supply source through embankments is excluded.
Lake	 It is designated according to the same criteria as in the case of river water or subsurface water, but for water source-only dams, water sources with a daily water intake of 100,000 tons or more, or lakes deemed necessary due to the characteristics of the region, the standard distance calculation base is the full water level line of the lake. If the area of the catchment area exceeds 150km² in the full water level area, the width can be determined separately in consideration of regional characteristics for the area exceeding 10km from the water intake point.
Underground water and Riverbank filtration	 From the water intake point, the standard distance is 200m radius for groundwater (20m radius in case of deep groundwater) and 2km for riverbank filtration water. Designated starting from the intake point by considering the depth of the ground, water quality, water intake, land use conditions in adjacent areas, soil permeability coefficient, stratum structure, and subterranean water veins.
Exception	 Areas free of pollutants such as barns and factories, and areas deemed to have no potential for contamination and development within the next 10 years when reviewing designation of protected areas In the vicinity of water intake facilities that take in deep underground water, in areas where it is recognized that there is no concern for water pollution due to geology or stratum structure An area where water intake facilities are installed to supply only industrial water, and it is recognized that there is no obstacle to the use of industrial water even without designation of a protection area

^{*}Source: Water Source Management Rules (Ministry of Environment No.994)

Treated effluent discharge point of STP in Madari Khal is about 7.6km away from the intake facility of Modunaghat WTP and about 11.5km away from the intake facility of Mohara WTP, so the impact of effluent will be negligible to the intake of WTP. For instance, 4.0km of standard distance from the intake of WTP is considered when designating a water source protection area in Korea.

Table 4-39 Distance from Water Source

Water Source	River	Flow Distance (From STP)	Remarks
Modunaghat WTP	Halda River	7.6km	
Mohara WTP	Halda River	11.5km	

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

4.2.3.12 Sludge Treatment Process

4.2.3.12.1 Thickening Facility

4.2.3.12.1.1 Function

Waste activated sludge or biosolids coming from the secondary sedimentation tank is fairly dilute, with a suspended solids concentration in the range of 0.5% to 1.2% dry solids (DS). Biosolids thickening is therefore needed to reduce the volume of biosolids that are sent to stabilization treatment and subsequent dewatering.

4.2.3.12.1.2 Thickening Type

Mechanical thickening and gravity thickening is compared and reviewed as follows. Mechanical Thickening is applied to this project considering with high solids recovery rate and stable operation.

Table 4-40 Comparison of Thickening Type

Category	Mechanical	Gravity
Introduction	A method of mechanically thickening, separating and discharging sludge that is difficult to settle and thickening	 Condensation using gravity by retaining the sludge A method of collecting and discharging the sludge settled on the floor at the outlet with a scraper
Advantage	Required area is small High solids recovery rate Less bad smell due to closed structure	Simple structure and easy maintenance Suitable for primary sludge treatment as storage and Thickening are possible at the same time Low noise and vibration
Disadvantage	 The initial facility cost is expensive and the maintenance cost is higher than that of the gravity type A lot of noise and vibration There are many mechanical devices, and the power cost is high. 	The treatment efficiency is not stable because it is affected by the temperature. Bad smell Required area is very large
Select	•	

4.2.3.12.2 Stabilization Facility

4.2.3.12.2.1 Function

Waste Activated Sludge (WAS) or excess Biosolids produced by Biological Treatment is not stabilized. It has potential for putrefaction and contains a fairly high concentration of pathogens (fecal bacteria, viruses, helminths, etc.). Almost any reuse or disposal option requires further stabilization treatment to prevent odours and attracting disease vectors like flies and rats. Biological stabilization by either aerobic or anaerobic digestion is the most common

4.2.3.12.2.2 Stabilization Type

The stabilization method can be divided into anaerobic digestion and aerobic digestion, and should be selected in consideration of local weather conditions, electric power, and operating personnel. Aerobic digestion has high power costs due to the operation of a blower. Anaerobic digestion reduces power and maintenance costs through the production of methane gas, and has high Dewatering efficiency. Sludge stabilization process (anaerobic digestion) is planned to be introduced in Phase 2 in the consideration of the difficulty of O&M.

Table 4-41 Comparison of Stabilization Type

Category	Anaerobic	Aerobic
Introduction	Organic matter is decomposed by microorganisms in the absence of dissolved oxygen	Air reacts with microorganisms to decompose organic matter
By-product	• CH ₄ , CO ₂ , H ₂ O	• CO ₂ , H ₂ O
Advantage	Product CH4 Less sludge production after treatment Low power and maintenance cost	Reduce bed smell Easy to operate Supernatant water quality good
Disadvantage	 Need to maintain digestion temperature (35°C~55°C) The growth rate of microorganisms is slow, so adaptation time is required. Bad smells caused by ammonia and H₂S 	Poor dewatering of sludge Power cost for aeration is high Low organic matter reduction rate There are no valuable by-products of production
Select	•	

4.2.3.12.2.3 Anaerobic Digestion Process

In this plan, mesophilic two hase anaerobic digestion process is applied to this projection considering with a large amount of bio gas and high stability against shock loads.

Table 4-42 Comparison of Anaerobic Digestion Process

Category	Mesophilic Two Phase Anaerobic Digestion	Mesophilic One Phase Anaerobic Digestion		
Introduction	Acid Phase Methane Phase	Acid/Methane Phase		
	Composed of acid phase digester and methane phase digester	All processes of anaerobic bacterial metabolism are conducted in one reactor		
Advantage	 Bio gas production is high Good stability against shock loads such as fluctuation in inflow properties It is possible to maximize the operation of the process by dividing the digester 	Low initial installation cost and simple structure Required area is small		
Disadvantage	Required area is large Separate management of acid fermentation gas with high H ₂ S Thickening is required Maintenance is difficult	 Low methane production efficiency Weak to impact load Difficulty optimizing the process due to acid and methane fermentation being carried out simultaneously 		
Select	•			

4.2.3.12.3 Dewatering Facility

Dewatering of the thickened or digested sludge is required so the sludge can be handled as a solid material that does not release large amount of free water upon standing. It also reduces the total volume (and weight) of the material to be hauled for off-site reuse or disposal. To achieve this, a concentration of at least 18 - 20 percent dry solids is required.

Table 4-43 Comparison of Dewatering Type

Category	Mechanical	Sludge Drying Bed
Introduction		
	Dewatering sludge using mechanical power	 Dewatering by evaporating sludge under natural conditions
Efficiency	High efficiency	Takes a long time using natural conditions Low efficiency compared to mechanical methods
Maintenance	Requires regular check Less manpower required due to automation	 Compared to mechanical Dewatering, electricity and coagulant consumption are small. Requires a lot of manpower
Required Area	• Small	• Large
Advantage	Unaffected by seasons or climate No problems caused by secondary pollution	Low maintenance cost such as power cost No breakdown, simple maintenance
Disadvantage	High power and maintenance cost Requires regular check	 Unusable in rainy weather, sensitive to seasons and climate Occurrence of secondary pollution such as groundwater contamination, bed smell problems
Construction Cost	• Middle	• Small
Maintenance Cost	Large (Electricity cost)	Small (Manpower cost)
Select	•	

4.2.3.13 Final Disposal of Sludge Cake

CCC operates two municipal solid waste landfills in Arefin Nagar and Halishahaar. Due to the lack of capacity of the existing landfills, CCC are planning for the alternative option for the solid waste management, but site selection is difficult due to the land acquisition and complaints from local residents.

There are many options to consider as the final disposal of sludge cake, but in reality, landfill is considered the most feasible option. But there is no landfill site to cater the sludge cake from Catchment-3 in CCC. Since there are currently 4 sewerage projects in progress in addition to this EDCF project in Chattogram City, CWASA have to set up the long-term perspective plan of sludge cake disposal in the consideration of whole 6 catchments of CCC.

Table 4-44 Municipal Solid Waste Landfills of Chattogram City

Table 4-45 Option of Final Disposal of Sludge Cake

Table 4-45 Option of Final Disposal of Sludge Cake						
Category	Landfill	Incineration	Composting			
Introduction	Landfill after Thickening and mechanical Dewatering	Incineration after thickening and dewatering Incinerated ash is disposed of at a nearby landfill	Production of effective products by fermentation after thickening and dewatering			
Advantage	 No additional facilities The processing cost is relatively low No additional operation management required 	Low pollution load on the environment Possible to generate electricity using recovered heat	Generation of effective products such as land improvement agents Reduce operating and management costs by selling effective products			
Disadvantage	Need to secure an alternative landfill due to insufficient capacity of the existing landfill	High facility investment cost Operation management is difficult, so a separate manager is required High operating cost	 Demand is limited due to the prejudice for the sludge cake Facility investment and operation management cost are high Operation management is difficult, so a separate managing is required 			
Select	•					

4.2.3.14 Reserve Facilities for Sludge Treatment

Option study of reserve facilities for sludge treatment such as sludge drying bed, faecal sludge treatment plant and temporary sludge cake storage facility is presented to reduce the operation & maintenance cost of sewage treatment plant as below.

- Sludge drying bed can be used for a sludge thickening and dewatering instead of mechanical thickening and dewatering facility during dry season.
- Gravity faecal sludge thickening tank and constructed wetland can be used for a faecal sludge treatment instead of mechanical thickening and dewatering facility during dry season.
- Sludge cake storage tank can be used as a short-term plan for the final disposal of sludge cake.

As a result of the option study, reserve facilities for sludge treatment are not included in the project scope because the construction cost is about 12 US\$ million, so the initial investment cost is excessive and even considering the reduction in O&M cost, it is analyzed as economically not feasible.

Table 4-46 Reserve Facilities for Sludge Treatment

Category		Specification	Capacity	Construction Cost (US\$ thousands)
Sludge D	rying Bed	W20.0m x L40.0m x H0.7m x 48Nos.	26,880 m ³	7,539
Faecal Sludge	Thickening	W13.3m x L15.0m x H2.0m x 4Nos.	800 m ³	196
Treatment	Constructed Wetland	W20.0m x L25.0m x H1.0m x 2Nos.	1,000 m ³	191
Sludge Cake S (A1		W20.0m x L40.0m x 1No.	46,000 m ²	4,171
То	tal			12,097

Sewage treatment plant will be located in the A3 site, sludge cake can be stored in the A1 site or A2 site as a tentative plan before CWASA set up the long-term perspective plan of sludge cake disposal.

Table 4-47 Storage Capacity in the STP Reserve Site

Category			Storage capacity			Storage Expectancy
		Area (m²)	Height (m)	Capacity (m³)	(2030, m³/d)	(year)
A1 Site	With Reserve	46,000	1.5	69,000	121	1.6
AT SILE	Without Reserve	187,000	1.5	280,500	121	6.4
	A2 Site	51,000	1.5	76,500	121	1.7

Process flow diagram and layout of reserve facilities for sludge treatment is as below.

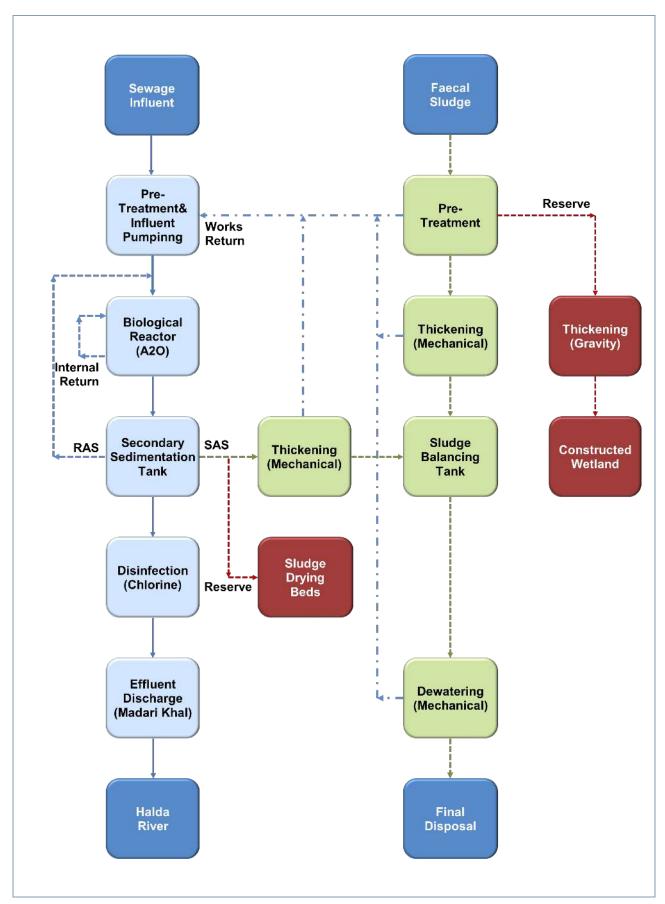


Figure 4-17 Process Flow Diagram including Reserve Facilities for Sludge Treatment

Figure 4-18 Layout of Reserve Facilities for Sludge Treatment

4.2.3.15 Faecal Sludge Management

4.2.3.15.1 Introduction

The component of faecal sludge management consists of faecal sludge collection, treatment and reuse or final disposal. Faecal sludge generated from the on-site system should be collected regularly to prevent the accumulation of sludge and the discharge of untreated water to public water body.

In this study, it is planned to introduce the sewerage system to five wards in priority where current water service coverage under CWASA is available out of seven wards in Catchment-3 in the consideration of project budget. Sewage service coverage of the Catchment-3 is 0% at the end of 2022 and is planned to achieve 60.0% by 2030 after completion of the project and to achieve 80.0% by 2070 in the final target year.

This study proposes a concept for faecal sludge management in order to cope with the coming challenges connected to the rapid growth of the project area. Part of the concept includes the use of on-site system in low density urban areas of Chattogram City, Hathazari and Raozan where the construction of sewerage system would not be cost effective.

Currently most of the faecal sludge in Chattogram City is collected by a private company and is treated unsanitary, so the long-term plan of faecal sludge management was presented in the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP). In the follow-up on-going sewerage project, faecal sludge management is included in the project scope of each project and CWASA is having a discussion with the CCC regarding the R&R of FSM.

In order to operate the FSM systematically, it is necessary to improve the capacity of the CWASA and the CCC.

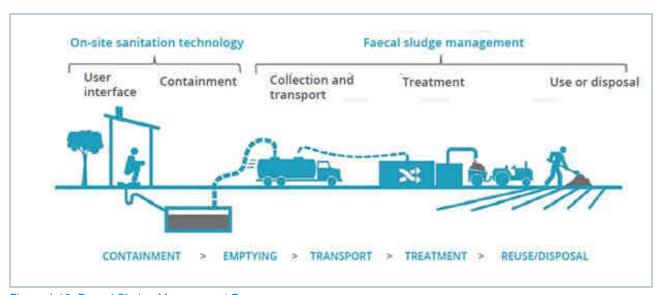


Figure 4-19 Faecal Sludge Management Process

4.2.3.15.2 Current Status

In terms of types of on-site system based on field survey of 400 households in the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP), 64.5% of the households have septic tanks, 17.0% have pit latrine and 2.0% have VIP latrines. The remaining 16.5% of the households do not have any proper type of on-site system, so the untreated wastewater is discharged to the public water body.

Table 4-48 Types of On-Site System in the CCC

	Category	Frequency	Percentage (%)
	Septic Tank	258	64.5
Hygienic	Pit Latrine	68	17.0
Toilet	Ventilated Improved Pit (VIP) Latrine	8	2.0
	Sub-Total	334	83.5
	Flush directly to drain/khal	11	2.8
Unhygienic	Pit Latrine without slab directly to drain/khal	9	2.2
Toilet	Pour flush directly to canal	44	11.0
	Sub-Total	64	16.0
	No Toilet, Open Defecation	2	0.5
	Total	400	100

^{*}Source: Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP)

In terms of on-site system emptying, the majority (91.8%) of households depend upon local sweepers. Only 6.2% of the households are currently using the service provided by the CCC and NGO using vacuum tanker. CCC is currently providing limited faecal sludge collection and transportation services. CCC has two vacuum trucks having a capacity of 3.6m³. All the collected faecal sludge by CCC is transferred to the Halishahar landfill and disposed without any treatment.

Table 4-49 Faecal Sludge Collection Status

Category	Frequency	Percentage (%)	Remarks
Local Sweeper	90	91.8	
CCC	3	3.1	
NGO	3	3.1	
Others	2	2.0	
Total	98	100.0	

4.2.3.15.3 Regulatory Framework of FSM

According to the National Action Plan for implementation of Institutional and Regulatory Framework for Faecal Sludge Management for City Corporation (Local Government Division, 2021), the City Corporation shall be responsible for proper execution of the entire FSM service chain, including collection (emptying), transportation, treatment, disposal and end-use. The City Corporation shall carry out and/or oversee these operations, making sure that there are carried out in compliance with existing rules and regulations with the cooperation of relevant authorities and agencies as below.

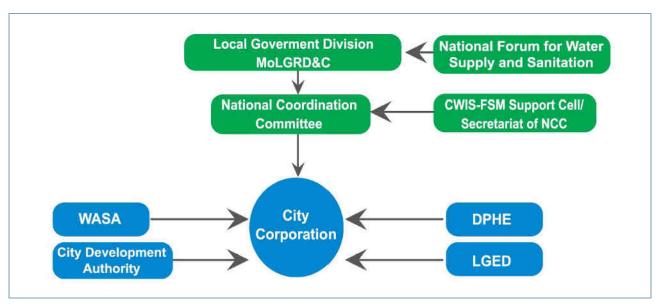


Figure 4-20 Implementation Structure for FSM at City Corporation

In the case of the Chattogram City, the R&R of sludge collection, treatment, and disposal among CCC, CDA, and CWASA was discussed with the support of World Bank and a Memorandum of Understanding (MoU) among these three parties was drafted in October 2022 as below.

CWASA may be responsible for the collection, transport, and treatment of faecal sludge for the entire CCC area on completion of each on-going sewerage projects.

Table 4-50 R&R of FSM in Draft MoU among CWASA, CCC, and CDA

Category	Scope
CWASA	 Conduct a baseline survey in CCC area to identify and demarcate areas / households to be served through on-site sanitation with a focus on FSM and also analyze the situation regarding FSM in low-income and other communities.
	 Prepare MIS on FSM (holding type, number of occupants, holding tax, desludging dates, and water connection) linked with GIS.
	Share the MIS with CCC and regularly update the database.
	 Scale up the entire value chain FSM in CCC area as mentioned in MP and implement the entire value chain by 2025.
	Arrange faecal sludge collection equipment and vehicles as well as construct, operate, and maintain FSTP.
	• On completion of FSTP, be responsible for the collection, transport, and treatment of faecal sludge for the entire CCC area.
	• Support and take part with CCC and CDA in awareness-raising programs regarding the disconnection of septic tanks and pits connected to drains, khals, and water bodies.
	Pilot alternative sanitation schemes in the LICs and gradually scale them up in all 41 wards.
	Prepare a business plan for O&M of the FSM project and share it with CCC.
CCC	Continue FSM services until new FSTP is constructed by CWASA in 2025.
	After 2025, CWASA will be responsible for the collection and treatment of faecal sludge. Subject to an
	agreement amongst the parties all assets (trucks and FSTPs) will be transferred to CWASA and they will be

kunhwa

Category	Scope
	 responsible for their O&M of the aforesaid infrastructures. Start scheduled emptying of septic tanks and pits as mentioned in Bangladesh National Building Code 2020. Provide necessary data to CWASA for the preparation of the MIS. Organize awareness-raising programs regarding the disconnection of septic tanks and pits connected to drains, khals, and water bodies with support from CWASA and CDA. Start enforcing the disconnection of illegal connections from septic tanks and pits with drains and water bodies from January 2023. CDA and CWASA will support the program. This program shall be continuous and shall be continued until the desired results are obtained. Provide necessary support to CWASA in piloting alternative sanitation schemes in the LICs and gradually
	scale them up in all 41 wards.
CDA	 Support CCC to start scheduled emptying of septic tanks and pits as mentioned in Bangladesh National Building Code 2020. Support CCC to organize awareness-raising programs regarding the disconnection of septic tanks and pits connected to drains, khals, and water bodies. Support CCC to enforce the disconnection of illegal connections from septic tanks and pits with drains and water bodies from January 2023. CWASA will also support the program. This program shall be continuous and shall be continued until the desired results are obtained. Provide necessary support to CWASA in piloting alternative sanitation schemes in the LICs and gradually scale them up in all 41 wards. Engage with CWASA during the approval of new building construction permits and development of new housing areas to ensure that the sanitation component of aforesaid new construction or development is in line with the MP of CWASA.

4.2.3.15.4 Faecal Sludge Production

In Phase 1 as of year 2040, faecal sludge production is 93m³/d and in Phase 3 as of the final target year 2070, faecal sludge production is 142m³/d.

Although low-density area of Chattogram City and sub-urban area such as Hathazari and Raozan is planned using the on-site system until the final target year 2070, centralized sewerage system can be introduced as the project area develops. In this study, capacity of faecal sludge treatment plant is planned as $100 \, \mathrm{m}^3 / \mathrm{d}$ for the Phase 1 and future expansion plan for the Phase 2&3 have to be established based on the actual faecal sludge collection and O&M status of FSTP.

Table 4-51 Faecal Sludge Production

Cat	egory	Base (2022)	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)
	CCC	27,201	13,269	14,666	15,593	14,683
Annual	Hathazari	6,597	8,038	10,289	13,712	17,399
(m³/year)	Raozan	4,949	6,721	9,121	14,004	19,840
	Total	38,747	28,028	34,076	43,309	51,922
	CCC	75	36	40	43	40
Daily	Hathazari	18	22	28	38	48
(m³/d)	Raozan	14	18	25	38	54
	Total	107	76	93	119	142
Capacity of	f FSTP (m³/d)	100	100	100	100	100

4.2.3.15.5 Faecal Sludge Collection

Faecal sludge collection vehicle will be procured in the project to collect the faecal sludge from the serving area with on-site system in Chattogram City, Hathazari Upazila and Raozan Upazila.

Table 4-52 Procurement of Faecal Sludge Collection Vehicle

Category	Capacity (m ³)	Quantity	Photo	Remarks
Type 1	10.0	1		
Type 2	5.0	2		
Type 3	3.0	2	DSK	
Type 4	0.7	2		
Type 5	0.5	7		

4.2.3.15.6 Faecal Sludge Treatment Plant

Faecal sludge treatment plant is planned to treat the faecal sludge after collection and transport to the sewage treatment plant. Faecal sludge will be co-treated with sewage sludge after pre-treatment and thickening. Anaerobic digestion as sludge stabilization process is planned to be introduced in Phase 2 in the consideration of the difficulty of O&M.

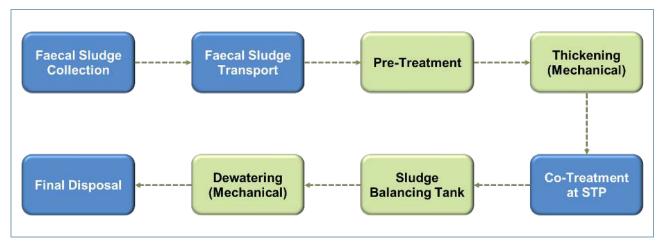


Figure 4-21 Faecal sludge treatment process diagram (Phase 1)

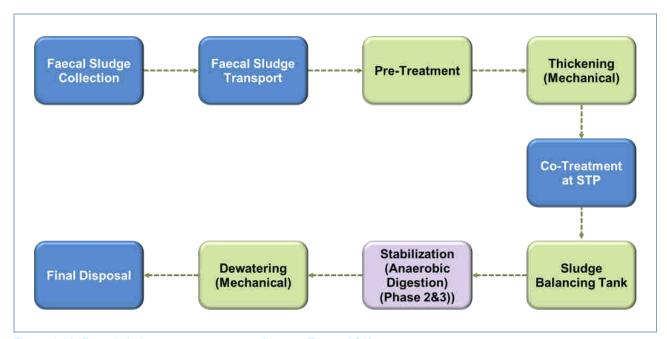


Figure 4-22 Faecal sludge treatment process diagram (Phase 2&3)

4.2.3.16 Energy Self-Sufficient Plan

Biogas power generation & Solar power generation is planned as a renewable energy source to contribute for the sustainable development by introducing green technology and reducing greenhouse gas emission.

- Anaerobic digestion for biogas power generation will be introduced in Phase 2.
- Solar panels will be installed on top of the biological reactors in Phase 1.

Energy self-sufficiency rate of STP is planned as 13.5% in Phase 1, 27.2% in Phase 2 and 23.9% in Phase 3 respectively and it is subject to change the project implementation of each phase.

Table 4-53 Detail of Solar Power Generation

	Category	Description	Remarks
Re	equired Area	3,100m ²	On top of the biological reactor
PV M	odule Capacity	567kW	315W/module X 1,800modules
Pow	er Generation	207MW/year	567kW X 365days
Fee	d in Tariff Rate	0.096 USD/kWh	
An	nual Income	USD 19,610	206,955kW/year X 0.096USD/kWh

Table 4-54 Energy Self-Sufficient Rate of STP

Category		Phase 1 Phase 2 (2040) (2055)		Phase 3 (2070)
Capacity of	STP (m ³ /d)	60,000	90,000	120,000
Power Consu	mption (MVA)	4.20	5.40	7.40
Dower Concretion	Biogas	-	0.90	1.20
Power Generation	Solar Power	0.57	0.57	0.57
(MVA)	Total	0.57	1.47	1.77
Energy Self-Suf	ficient Rate (%)	13.5	27.2	23.9

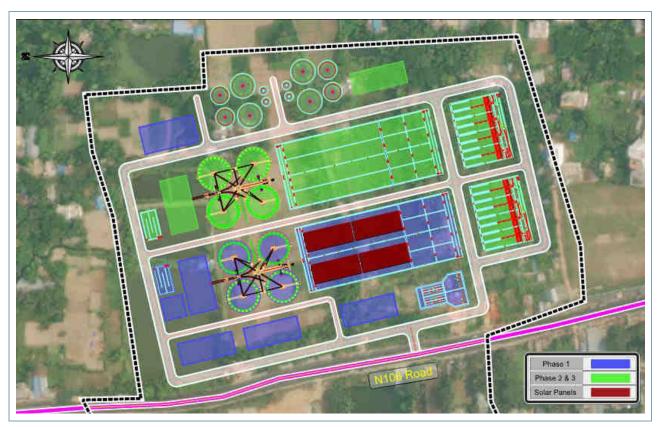


Figure 4-23 Layout of Solar Power Generation

4.2.3.17 Operation & Maintenance Vehicle

Operation & maintenance vehicle will be procured in the project for O&M of sewage treatment plant.

Table 4-55 Operation & Maintenance Vehicle

Category	Capacity (m³)	Quantity	Photo	Remarks
Combined Backhoe/ Wheel Loader	0.6	3		
Truck with Hydraulic Hoist	7.5	2		
Truck with Hydraulic Hoist	20.0	1	-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	

4.3 Sanitary Sewer & Pumping Station

4.3.1 Introduction

In the sewerage project, sanitary sewer planning has the function of collecting & transporting the sewage from the sewerage service area to the sewage treatment plant to improve the Living Standard and to preserve water quality in public waters. Therefore, in this plan, a sanitary sewer construction plan should be established in consideration of the local conditions within this planning area.

Chattogram is currently in a situation where sewage is discharged into the river from septic tanks or households without Sewage treatment plant, and it is urgent to construct new sanitary sewers and Sewage treatment plant. In this plan, the Sewerage Collection System in the planned sewage treatment area is planned based on the separate sewer system. The basic direction of the new sanitary sewer shall be to comprehensively review the collection of sewage from the main sewer in the treatment area, topographical characteristics, and conditions, and establish a maintenance plan.

4.3.2 Current Status and Problems

Chattogram is currently discharging sewage from septic tanks or households into stormwater pipes or rivers without Sewage treatment plant, so water pollution in rivers is serious. In addition, some of the untreated sewage discharged into the river is taken as raw water for water treatment facilities, and it is judged that it will adversely affect the Living Standard of local residents and public health. In this plan, it is planned to establish sewage treatment plant and sanitary sewer to transport sewage to the planned sewerage service area.

4.3.3 Sewerage Collection System

4.3.3.1 Introduction

In determining the Sewerage Collection System of the existing urban area, it is desirable to comprehensively review the characteristics and problems of each drainage method, constructability, economic feasibility, maintenance management, and water quality conservation to select an exclusion method that sufficiently converges the situation.

In this plan, based on the sewage treatment area established in the basic plan for sewage maintenance in Chattogram, the pros and cons of general sewage drainage methods are compared, and a solution that meets the local conditions of the sewage treatment area in consideration of economic feasibility, constructability, maintenance, and water quality preservation the Sewerage Collection System was determined.

4.3.3.2 Types of Sewerage Collection System

In addition to the combined and complete separate sewer system, there are incomplete separate sewer system and merged methods in the sewage exclusion method. Incomplete separate sewer system and merged methods are derived from combined and complete separate sewer system. A general overview of these four methods is as follows:

Table 4-56 Comparison of Sewerage Collection System

Ca	tegory	Description	Remarks
Separate Sewer System	Complete Separate	 It is a method of separating rainwater and sewage and inflowing them into stormwater and sanitary sewers to exclude them. Sewage flows into the sewage treatment facility through the sanitary sewer for treatment, and rainwater is discharged into nearby rivers and lakes through the stormwater sewer. Generally applied to new towns, housing development areas, and redevelopment areas. 	
	Incomplete Separate	 Sewage is transported to Sewage treatment plant through sanitary sewer and treated, but rainwater is excluded by guttering or natural drainage. In rural areas, it is applied when rainwater is excluded by maximally utilizing existing natural drainage channels or drainage facilities. 	
Combined	Sewer System	 A method of excluding rainwater and wastewater into a system of the same sewer. In case of rain, a certain amount of flow is intercepted through the collection pipe and introduced into the sewage treatment facility, and the excess is discharged by overflowing. If there is no rain, the entire amount of sewage is transported to a sewage treatment plant for treatment. 	
Merged Methods		Separate and combined Sewer System are mixed in the same area. If some areas cannot be classified, the classification area and the confluence area coexist.	

In general, a general comparison of sewerage collection system that can be adopted for existing urban areas is as follows. In areas where new sewerage systems are newly installed, a separate Sewerage Collection System is adopted in terms of preventing water pollution in public waters, and in areas where existing combined sewage systems are supplied, the combined Sewerage Collection System is maintained in consideration of economic feasibility and construction.

Table 4-57 Comparison of Sewerage Collection Systems

Cate	egory	Separate Sewer System	Combined Sewer System
Schematic		Rain Stop-log Sewage Stop-log Septic tank Septic tank Septic tank	Toilet Septic tank Constituted by the septic tank
	Design	Sewage and rainwater are discharged into separate sewers	Constructing a sewer network suitable for topographical conditions in order to quickly discharge rainwater
Construction	Constructability	Construction is complicated when burying two sewage and rainwater sewers on the same road	It is difficult to construct a narrow road when a large-diameter pipe is used
	Cost	The case of constructing two systems of sewage and storm water pipes is expensive, but constructing only sanitary sewer is economical	Constructing one large-diameter sewer is cheaper than constructing two sewage and stormwater sewers, but is more expensive than constructing only the sewage sewer.
	Connection	Close monitoring is required	• None
	Sedimentation	Less sedimentation in the sewer No cleaning effect expected	 In clear weather, the water level is low and the flow speed is low, making it easy for dirt to settle. Less cleaning frequency in sewer.
Maintananaa	Sediment Inflow	There is little soil inflow	When it rains, a large amount of soil flows into the treatment plant and deposits on the bottom of the waterway for a long time.
Maintenance	Repair	 There is a risk of blockage due to small-diameter pipes, but cleaning is relatively easy. In the case of guttering, management takes time and is often insufficient. 	No fear of closing Inspection and repair are relatively easy Cleaning is time consuming
	Management	 In the case of maintaining the existing rainwater sewer, it is necessary to clarify the manager. 	The manager can integrate and abolish unclear sewers, and the sewerage manager can manage the overall management.
	Overflow During Rain	• None	When it rains more than a certain amount, sewage overflows.
Water	Overflow During Dry	• None	Occurs when there is an increase in the amount of sewage.
Quality Preservation	Excellent Road Cleaning	Washing water containing contaminants from the road surface is directly introduced into rivers.	Improvements or improvements to parts of the facility can accommodate and treat contaminated rainwater during rainfall.
	Dumping Garbage	There is a case of illegal dumping of garbage in the stormwater sewer.	• None
Environment	Land Use	In case of maintaining the existing gutter, repair of the cover is required.	In the case of abolishing the existing gutter, the road width can be effectively used.

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

4.3.3.3 Selection of Sewerage Collection System

4.3.3.3.1 Considerations

As suggested above, the Sewerage Collection System has its advantages and disadvantages, respectively, and therefore, a comprehensive review of construction, maintenance, water quality preservation, and environmental aspects should be conducted in consideration of the regional characteristics of the planned area.

Korea's sewage design standards (2017, Ministry of Environment) require Separate Sewer System to prevent flooding due to rainwater and water pollution in public waters. If it is difficult to adopt Separate Sewer System, such as the form of existing sewage facilities and underground excavation conditions, a combined sewer line may be considered.

The separate sewer system is a method of transporting only sewage to the treatment plant. It is advantageous in terms of water pollution because there is no discharge of sewage into the water area in case of rain. It is also possible to promote sewage supply. However, in the case of the separate sewer system, relatively polluted road drainage is directly discharged into public waters through rainwater pipes at the beginning of rainfall, so it is difficult to construct both rainwater pipes and sanitary sewer in existing urban areas with narrow roads.

As a result of comparing and reviewing sewage treatment methods in various aspects, it is not possible to say which method is advantageous, but in order to prevent water pollution of effluent water, a separate sewage exclusion method is currently adopted in Korea.

In this plan, the Sewerage Collection System is a classification method in principle, but in case of inevitable due to local conditions, incomplete classification method and merger method are set as selection criteria.

- Review of sewage separation pipes in various development plans, such as planned development areas and new housing site development areas
- Examination of classification type targeting the region as an extension of the new trunk sewer
- Review of classification formula targeting the vicinity of the newly established sewage main sewer area
- Review of classified sewage system in areas where sanitary sewer excavation is easy targeting areas where small-scale water system separation is possible.

4.3.3.3.2 Selection of Sewerage Collection System

In this plan, the step-by-step classification plan was set as follows;

Table 4-58 Decision on Sewerage Collection System

		Sewerage Collection System			Target	
Category	2022	Phase1 (2040)	Phase2 (2055)	Phase3 (2070)	Year (2070)	Remarks
Catchment-3	Untreated	Separate	Separate	Separate	Separate	

4.3.3.3.3 Sewerage Collection System of On-going Sewerage Projects

The Sewerage Collection System of the on-going sewerage project in the Chattogram are as below.

Table 4-59 Sewerage Collection System of On-going Sewerage Projects

Category	Catchment Area	Sewerage Collection System	Progress	Remarks
STP-1	Halishahar	Separate Sewer System	On Construction	
STP-2	Kalurghat	Separate Sewer System	Feasibility Study Completed	
STP-3	Fatehabad	Separate Sewer System	Feasibility Study Completed	
STP-4	East Bakalia	Separate Sewer System	Feasibility Study Completed	
STP-5	North Kattali	Separate Sewer System	EOI	
STP-6	Patenga	Separate Sewer System	Feasibility Study On-going	

4.3.4 Sanitary Sewer

4.3.4.1 Introduction

Sanitary sewer transport sewage to Sewage treatment plant by efficiently collecting sewage. It should be established by reflecting the characteristics of the region to enable efficient management of infiltration and inflow of the sewer.

In this plan, basic concept of sanitary sewer plan for the trunk sewer, primary sewer and secondary sewer, pumping station and household connection plan has been established as below.

4.3.4.2 Design Criteria

4.3.4.2.1 Diameter

The planned wastewater generation for the sanitary sewer is the hourly maximum in 2070, the final target as explained in the planning framework.

The permissible amount of sewerage discharge is 100% for small (200~600mm), 50~100% for medium (700~1,500mm), and 25~50% for large (1,650~3,000mm). Since Bangladesh does not have an acceptable standard for sewage pipe volume, the pipe diameter is planned according to the Korean standard.

4.3.4.2.2 Applied Mathematical Equations

Sewage is suspended matter as compared to normal water is contained a lot, because it is not so much given trouble in actuarial and repair calculated in the same way as ordinary water. Thus, the formula is applied on the generally circular tube in gravity flow, using "Manning equation", the stage pavilion, and uses "Kutter equation".

Manning equation

$$V = \frac{1}{n} \cdot R^{2/3} \cdot I^{2/3} (m/\text{sec})$$

$$Q = A \cdot V (m^3/sec)$$

Where, V: velocity(m/sec) n: coefficient of roughness: hydraulic grade R: plowing depth(m) Q: quality(m²/sec) A: cross sectional area of flow(m²)

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

Kutter equation

$$V = \frac{23 + \frac{1}{n} + \frac{0.00155}{I}}{I + (23 + \frac{0.00155}{I}) \cdot \frac{n}{\sqrt{R}}} \sqrt{RI} (m/\text{sec})$$

$$Q = A \cdot V (m^3/sec)$$

Where, V: velocity(m/sec) n: coefficient of roughness: hydraulic grade R: plowing depth(m) Q: quality(m³/sec) A: cross sectional area of flow(m²)

Hazen-William's equation

$$Q = A \cdot V$$

$$V = 0.84935 \cdot C \cdot R^{0.63} \cdot I^{0.54}$$

Where, C: Hazen-Williams factor I: hydraulic grade R: plowing depth (m)

In this plan, when is a gravity flow, apply "Manning equation" to be used because it is the most commonly and the experimental value sufficiently Also, it is applied Hazen-William's equation for manhole pumping stations and force main sewer.

4.3.4.2.3 Coefficient of Roughness and Velocity

In the case of the equation Manning and Kutter for gravity flow, officially applied coefficient of roughness (n), 0.010~0.022 is applied depending on the material of the pipe and drain. Further, Hazen-William's equation for force main, it is applied 90~130 to coefficient of velocity(c) depending on the number of years elapsed tube and the material of the tube. The number of applied the coefficient of roughness and velocity in this plan is as follows.

Table 4-60 Coefficient of Roughness and Velocity

Category	Coefficient of Roughness (n)	Coefficient of Velocity (c)	Remarks
Gravity Flow	0.010	-	
Force Main	-	130	

4.3.4.2.4 Velocity

The flow velocity in the pipe is governed by the flow rate or the gradient. In general, it is economical to determine the slope of the sewer according to the slope of the surface, but in this case, if the flow velocity relative to the slope is too small, it is easy for dirt to settle on the bottom of the pipe, and dredging is always required, making maintenance difficult and increasing maintenance costs. On the other hand, if the flow velocity is too high, the sewer is worn out and damaged by sand or gravel, etc., shortening the durability of the sewer, and also causing an accident in which the cover is separated due to air entrainment due to running water colliding with the downstream manhole.

On the other hand, if the slope is too steep for the reason that the pipe cross-section becomes smaller due to the focus on economic aspects, the depth of excavation increases, the cost of earthwork increases, construction becomes difficult, and natural flow becomes difficult due to the relationship between the water level of the discharge water surface in the trench.

Therefore, the following conditions should be met to determine the slope of the sewer.

- Set the flow rate so that soil and sand do not settle or stagnate in the pipe.
- The flow velocity in the downstream pipe is higher than that in the upstream.
- The slope becomes gentler as you go downstream.
- Slopes with significant rapids are to be avoided as they may cause damage to sewers.

Table 4-61 Minimum Velocity Literature Survey

Category	Literature	Sewer Type	Standard
		Storm Water Pipe	• 0.8m/s
Korea	Sewerage Design Criteria (2022)	Sewer Pipe	0.6m/s Securing a minimum slope of 5‰ or more at the starting point
Master Plan	Preparation of a Sanitation and Drainage Improvement Strategy and Master Plan for the City of Chittagong (2017)	Sewer Pipe	• 0.6m/s
lonon	Japan Sewage Works Association (2009)	Sewer Pipe	• 0.6m/s
Japan	Japanese Sewerage Handbook	Sewer Pipe	0.61m/s Particle movement limit flow velocity 0.26m/s
	American Society of Civil	Storm Water Pipe	• 0.75~0.9m/s
	Engineers (1970)	Sewer Pipe	• 0.6m/s
USA	Wastewater Engineering Collection and pumping of wastewater (McGraw-Hill Book)	Sewer Pipe	 0.6m/s A flow rate of 0.3 m/s is sufficient to prevent sedimentation of organic solids. 0.75 m/s is enough to prevent sedimentation of inorganic materials such as sand and gravel
UK	British Standard	Storm Water Pipe	• 0.75m/s
UK	Institution (1987)	Combined Sewer System	• 1.0m/s
France	Minister of Interior	Sewer Pipe	• 0.3m/s
Fiance	(1977)	Combined Sewer System	• 0.6m/s
EU	European Standard EN 752-4 (1997)	Sewer Pipe	• 0.7m/s
Germany	ATV-DVWK-Regelwerk (2001)	Sewer Pipe	• 0.48m/s • 10% increase from 300mm

In this plan, the minimum flow rate for the planned flow rate of the trunk sewer was determined to be 0.6 m/s.

The minimum flow velocity was set at 0.3 m/s to prevent the depth of the trunk pipe from increasing in the starting section and branch pipe with low flow. This criterion should be reviewed at the detailed design stage. The maximum speed was determined to be 3.0 m/s to prevent pipe damage due to excessive speed. Where the speed limit is exceeded, the speed is reduced by adjusting the slope at appropriate intervals.

Table 4-62 Plan of Velocity Standard Applied

Catogory	Gravit	Gravity Flow		Remarks
Category	Main Pipe	Branch Pipe	Force Main	Nemarks
Velocity	0.6~3.0m/s	0.3~3.0m/s	0.6~3.0m/s	

4.3.4.2.5 Cross Section of Pipe

In general, there are circular, rectangular, horseshoe, and egg shapes for the cross-sectional shape of sewers.

- Hydraulically advantageous
- Be economical for the load
- Construction cost will be low
- Maintenance will be easy
- Applicable to the circumstances of the construction site

The advantages and disadvantages of the commonly used round, rectangular, horseshoe and egg shapes are as follows.

Table 4-63 Comparison of Cross Section Shape

Category	Shape	Advantages	Disadvantages
Circle		 Hydraulically Advantageous Factory products can be used up to an inner diameter of 3,000 mm, so the construction period is shortened Simple mechanics calculation 	 Foundation work may be required for safe support Since it is a factory product, there are many junctions, so there is a risk of high groundwater penetration
Rectangle		 It is advantageous when the soil thickness and width of the construction site are restricted Simple mechanics calculation Hydraulically advantageous until full water 	When the rebar is damaged, it becomes very unstable for the upper load In the case of on-site casting, the construction period is delayed
Horseshoe Shape		 Economical and advantageous for large landscape sewers Hydraulically Advantageous Mechanically advantageous by the arch action of the upper half 	Poor workability due to complex cross- sectional shape In the case of on-site casting, the construction period is delayed
Egg Shape		Hydraulically advantageous compared to circle when flow rate is small Advantageous to earth pressure in the vertical direction compared to the circular shape	Depending on the material, the manufacturing cost may increase Accuracy is required for vertical construction, so meticulous construction is required

In this plan, the shape of the cross section was made in principle to use a circular pipe in consideration of the site conditions and constructability with high traffic volume. In the case of large pipes that are difficult to construct, install a reinforced concrete culvert and arrange an invert at the bottom to make it advantageous in terms of repair.

4.3.4.2.6 Sewer Excavation Location and Excavation Depth

It should be reviewed in consultation with the manager of roads, rivers, railroads, etc., taking into account the location of sanitary sewers and underground facilities or structures. The minimum cover for sewers is at least 1.0m for branch lines and at least 1.5m for trunk lines. When determining cover, consider the following;

- Minimum required cover in road planning
- Minimum depth for house hold connection and connection from the home
- Crossing problems with water pipes and other underground facilities
- Groundwater level and ground soil conditions

4.3.4.2.7 Manhole

Manholes should be installed not only for pipe inspection, cleaning, and ventilation, but also for pipe connections. Typical installation locations are the starting point of the pipe, the point where the direction, slope, and diameter of the pipe change, the point where the step occurs, and the maintenance of the pipe. The maximum manhole interval according to the pipe diameter set in this plan, such as necessary points, is as follows;

Table 4-64 Max Distance of Manhole

Diameter	>600mm	>1,000mm	>1,500mm	<1,650mm	Remarks
Distance(m)	75m	100m	150m	200m	

4.3.4.2.7.1 Type and Structure

The type of manhole is divided into No. 1 \sim No. 5 according to the diameter of the joint pipe. In addition, if special manholes are needed depending on the characteristics of the topography, relationship with underground facilities, pipe structure, etc., special Nos. 1 to 5, culverts and attached manholes are installed. The purpose of each manhole shape is as follows:

Table 4-65 Use of Standard Manholes by Shape

Category	Shape and Dimensions	Description Description			
No.1 Manhole	Inner Diameter 90 cm Round	The starting point of a pipe, the midpoint of a pipe with an inner diameter of 600 mm or less, and the joining point of a pipe with an inner diameter of up to 400 mm			
No.2 Manhole	Inner Diameter 120 cm Round	The midpoint of a pipe with an inner diameter of 900 mm or less, the joining point of a pipe with an inner diameter of 600 mm or less			
No.3 Manhole	Inner Diameter 150 cm Round	The midpoint of pipes with an inner diameter of 1,200 mm or less, the joining point of pipes with an inner diameter of 800 mm or less			
No.4 Manhole	Inner Diameter 180 cm Round	The midpoint of pipes with an inner diameter of 1,500 mm or less, the joining point of pipes with an inner diameter of 900 mm or less			
No.5 Manhole	Inner Diameter 210 cm Round	The midpoint of a pipe with an inner diameter of 1,800 mm or less			

Table 4-66 Uses of Special Manhole Shapes

Category	Shape and Dimensions	Description	
SN.1 Manhole	600 x 900	If the cover is small or it is impossible to install the No. 1 manhole due to other buried objects, etc.	
SN.2 Manhole	1,200 x 1,200	In case a circular manhole is not installed at the midpoint of a pipe with an inside diameter of 1,000 mm or less	
SN.3 Manhole	1,400 x 1200	In case a circular manhole is not installed at the midpoint of a pipe with an insid diameter of 1,200 mm or less	
SN.4 Manhole	1800 x 1,200	In the case where a circular manhole is not installed at the midpoint of a pipe with an inner diameter of 1,500 mm or less	
SN.5 Manhole	1200 x D	When it is difficult to apply standard manholes and special No. 1, 2, 3, and 4 manholes due to site conditions, apply to Hume pipes of D600mm or less	
Culvert Manhole	Ø900, Ø1,200	The midpoint of the sewage pipe by the shield method	
Manhole with Adjutant	-	When the level difference of the sewer is 0.6 m or more	

4.3.4.2.7.2 Small Manhole

Small manholes are installed where it is difficult to insert equipment into narrow existing roads and alleys, and it is difficult to relocate obstacles due to the large number of existing obstacles.

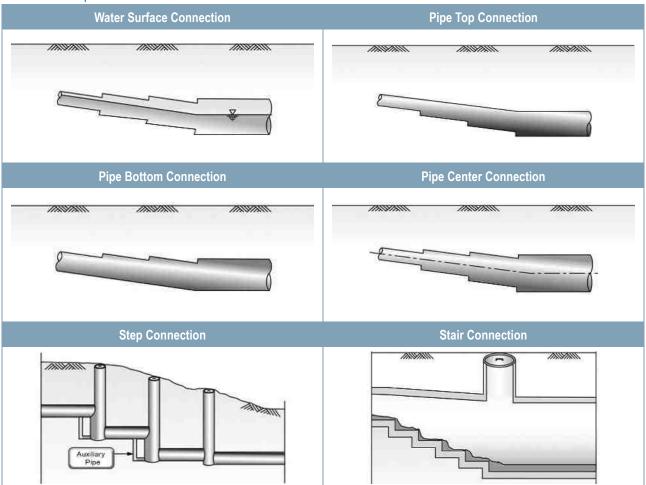
Table 4-67 Small Manhole Types and Applications

Category	Shape and Dimensions	Description
SN.1 Manhole	Inner Diameter 30 cm Round	 The starting point of a pipe, the midpoint of a pipe with an inner diameter of 150 mm or less, and the joining point of a pipe with an inner diameter of up to 250 mm
SN.2 Manhole	Inner Diameter 40 cm Round	The midpoint of a pipe with an inner diameter of 200 mm or less, the joining point of a pipe with an inner diameter of 250 mm or less
SN.3 Manhole	Inner Diameter 50 cm Round	The midpoint of pipes with an inner diameter of 250 mm or less, the joining point of pipes with an inner diameter of 300 mm or less
SN.4 Manhole	Inner Diameter 60 cm Round	The midpoint of pipes with an inner diameter of 300 mm or less, the joining point of pipes with an inner diameter of 400 mm or less

4.3.4.2.7.3 Manhole Fitting

Manhole accessories include inverts, footsteps, and manhole covers, and consider the following when installing these.

- (i) Invert
- The invert is the same as the pipe diameter and slope of the downstream pipe.
- The footing part of the invert has a cross slope of 10 to 20%.


- The width of the invert extends the downstream width the same width upstream.
- The level difference between the upstream pipe and the bottom of the invert should be about 3 to 10 cm.
- (ii) Foot Step
- Footrests should be made of non-corrosive materials and installed for ease of use.
- (iii) Manhole Cover
- The manhole cover is installed considering the convenience and safety of maintenance and watertightness to reduce the inflow of unknown water.

4.3.4.2.7.4 Pipe Connection Method

Manholes are installed and joined at the confluence of sewers and at the points of change in cross section, slope, direction, etc. At this time, a reasonable joining method should be used so that the running water in the sewer flows smoothly hydraulically. The connection of sewers should be determined by considering the following items.

When the diameter of a sewer changes or two sewers join, the joint method is usually a surface joint or a pipe joint. However, there are convergent joints and low-joint joints in addition to water surface joints and pipe joints, and each is determined by considering the topography of the drain, vertical slope, underground facilities and obstacles, etc., the water level of the discharge river, and the depth of sewer excavation.

Table 4-68 Pipe Connection Method



- Water face connection A method of joining by matching the energy gradient line or planned water level hydraulically.
- Pipe top connection A method of joining the pipe wells by matching them. The running water flows smoothly, but the digging depth increases, which increases the construction cost.
- Pipe bottom connection A method of joining so that the inner bottom of the sewer matches. It can reduce the construction cost by reducing the excavation depth and prevent the water level from rising. Suitable for pumped areas.
- Pipe centre connection It is not necessary to calculate the water level corresponding to the planned sewage volume, so it may be applied mutatis mutandis to the water surface junction.
- When two sewers join, the central pier angle should be between 30 and 45°, and should not exceed 60° as much as possible, and when merging with a curve, the radius of curvature should be at least five times the pipe diameter.
- The radius of curvature when small diameter sewers join is usually attached within the manhole, but the radius of curvature when large diameter sewers join is often attached only when special manholes or cast-in-place reinforced concrete sewers are installed. In addition, the sewer simply bends. In any case, such matters need to be taken into account.
- When the conduit bends in the opposite direction or when the conduit bends at an acute angle, the same considerations are taken into consideration, and ideally, it is desirable to bend in two stages.
- If the surface slope is steep, a stepped joint or a stepped joint is used according to the surface slope regardless of the change in pipe diameter.

Table 4-69 Pipe Connection Method (Curved Point)

4.3.4.3 Excavation Method

4.3.4.3.1 Construction plan by excavation depth

In this project, it was planned to install a sanitary sewer from West Sholashahar in the south along the N106 road to Fatehabad in the north. As the project site is a densely populated and heavily trafficked area, it is expected that difficulties in excavation work.

Road N106 is a major road that is constantly congested, and there is no alternative road that can be bypassed during the construction of this project. It is expected that many difficulties will arise in excavating and constructing the main trunks, D400~D1600mm sewers. In addition, if the depth of the excavation is deep, open-cut is difficult, so the temporary facility method should be applied. When installing the temporary facility, additional pile equipment is input, and the construction period may be delayed due to the time required for supply and demand of materials and installation.

Figure 4-24 Traffic on the N106 road

Considering the fact that excavation work is difficult due to heavy vehicle traffic, CWASA decided to apply the trench method for excavation depths of less than 6m and the trenchless method for excavation depths of 6m or more. In this feasibility study, the construction plan for each depth of excavation was established as follows in consultation with the CWASA.

Table 4-70 Construction Plan by Excavation Depth

Category	STP-3 (This Project)	STP-1	STP-2&4	STP-5	Remarks
~ 6m	Trench	Trench	Trunk: Trenchless Branch: Trench	Trench	
6 ~ 10m	Trenchless	Trenchless		Trenchless	
10m ~	Trenchless	Trenchless		Trenchless	

4.3.4.3.2 Considerations for Selection of Excavation Method

The excavation method and earth retaining construction method are based on the excavation height and the stratum and local conditions as a result of geotechnical investigation. For trench excavation, prefabricated simple retaining wall, H-Pile + wooden retaining board, sheet pile method, and propulsion method, the best construction method according to the location should be selected by comprehensively reviewing the workability, economic feasibility, and site conditions.

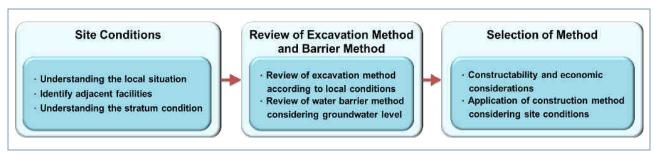


Figure 4-25 Excavation Method Selection Procedure

4.3.4.3.3 Comparison of Excavation Method

Chattogram City, the target area for this project, is a coastal city adjacent to the Bay of Bengal. Since the topography is flat, the depth of excavation is deep when laying sewers, and the groundwater level is estimated to be high because the Halda River & Bay of Bengal is adjacent to it.

In addition, since major roads and intersections in the city often cause traffic jams, the application of the trenchless method should be considered for sanitary sewer to be installed in these areas.

Commonly used excavation methods include the Open Trench method, which is easy and economical to construct, and the earth wall method, which can prevent ground deformation and inflow of groundwater and minimize the work space. The characteristics of excavation method were reviewed as follows.

Table 4-71 Comparision of Excavation Method

Table 4-71 C	Comparision of Excavation Method							
Category	Open Trench	Simple Retaining Wall	H-pile + Soil Retaining Plate	Sheet Pile	Trenchless			
Schematic					20100			
Overview of The Method	Excavation on a natural slope using a slope that can be self- sustaining	Ground excavation after formation of earth wall with prefabricated panels	After inserting the H-Pile, install the soil plate while excavating	Excavation after forming a barrier wall by installing a sheet pile	Buried by propelling pipes by manpower or mechanically			
Features	Very good economic feasibility in case of easy site securing Fast construction speed and simple process The lowest cost of construction Groundwater countermeasures required	Advantageous for excavation in urban areas where the site is narrow Easy to construct Low construction cost compared to H-Pile Groundwater countermeasures required	Low construction cost compared to sheet pile Steel can be reused Groundwater countermeasures required Boiling/Heaving measures required	Excellent water barrier effect in areas with high ground water level Steel can be reused Groundwater countermeasures not required Construction cost high	There is little construction pollution due to construction Long-distance construction possible Construction period can be shortened Need to pay attention to safety accidents Construction cost is the most expensive			
Depth	Within 2m of excavation depth	2~5m of depth, if the level of ground water is lower than excavation depth	 2m or more of excavation depth If the level of ground water is higher than excavation depth 	2m or more of excavation depth If the level of ground water is higher than excavation depth	traffic congested area Intersections, road crossings			

Table 4-72 Comparison of Trenchless Method

Table 4-72 C	comparison of Trenchless Method		
Category	Impact-type Steel pipe pressure method	Hydraulic-type Steel pipe pressure method	Semi-Shield
Schematic			6-8-5 10-6-5
Overview of The Method	A method of propulsion by making a launching base at the entrance and installing a propulsion pipe to strike the steel pipe with a hammer	A construction method in which a starting base is made at the entrance, a propulsion pipe is installed, excavation is carried out by manpower and machinery, and then the steel pipe is press-fitted with a hydraulic jack.	A method of filling the head cutter chamber with excavated soil to promote the stability of the face, and excavated soil is discharged by a screw conveyor and continuously propels the pipe by a jack at the rear of the pipe body in the head cutter chamber.
Advantage	 No acupressure wall required No risk of subsidence during excavation Construction period is short No strain of the existing structure. Excellent construction safety Small diameter propulsion is possible Construction cost is low 	Possible construction of obstacle confirmation No noise and vibration Possible to construct on bedrock layer	 Long-distance propulsion is possible The range of application according to geology is wide. The propulsion speed is fast and construction period can be shortened. The effect of ground subsidence is small. Plant equipment and work space for separation of slurry and soil are not required
Dis- advantage	Difficult to construct bedrock and gravel layer Concern about civil complaints due to noise Pre-investigation of obstacles should be accurate Depending on the geology, the construction precision decreases It is not possible to change the direction while driving Long-distance construction is not possible.	Sufficient depth is required Difficulty in small-diameter construction by manpower excavation The construction period is long. Existing structures may be damaged depending on site conditions (geological conditions, obstacles) It is not possible to change the direction while driving	It is difficult to respond when there are many trees and boulders in the ground Initial investment cost is high
Select			•
Reason	 small. It occupies a small work space, ha As a feasibility study step, a constribution is applied The project site is an area with high 	ance construction is possible, and the as a high propulsion speed, and short ruction method with a wide range of a the traffic, so the construction period canables propulsion and arrival base ins	ens the construction period. application according to the ground an be shortened, and the Semi-

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

Although the Semi-Shield construction method was selected in this plan, it is necessary to reexamine and select it through ground investigation and soil analysis through basic investigation during detailed design.

4.3.4.4 Pipe Protection and Foundation Work

When the soil thickness and loading exceed the load capacity of the sewer, when crossing under a railroad or crossing a river, the sewer should be protected against external pressure and buoyancy by building an outer circumference with concrete or reinforced concrete. If there is a risk of damage to the inner surface of the pipe due to corrosion and abrasion, consider this and use a pipe with excellent material or apply lining or coating to the inner surface of the pipe.

4.3.4.4.1 Pipe Foundation

The type of pipe foundation is determined by the type of pipe, soil quality, bearing capacity, construction method, load conditions, and excavation conditions. However, since the selection of the foundation method has a significant impact on the construction cost, it should be selected after sufficient review of the pipe's durability and economic feasibility.

The pipe foundation type is designed as direct foundation, sand foundation, rubble foundation, pile foundation, substitution, etc. It is important that the foundation work of the sewer is constructed with care. Differential subsidence of sewers causes stagnation of sewage, decay and odour. Cracks in sewers cause leaks and intrusion of groundwater, which is an obstacle in maintenance, so foundation work should be given special attention.

In addition, in the case of a concrete foundation, it is safe to surround the lower part of the pipe, and the greater the angle of the concrete, the higher the strength of the pipe. Depending on the type of sewage pipe, it is advantageous to properly construct it.

If the foundation ground is weak and cannot support the pipe load, or if there is a case of differential settlement in the trunk pipe, a reinforced concrete foundation is planned.

When buried sewers, not only does foundation work have a significant impact on the construction cost, but also if uneven settlement of the sewer occurs due to improper construction of the foundation work, the surrounding area may collapse in severe cases. Therefore, the durability and economic feasibility of the sewer should be sufficiently reviewed to select an appropriate method. In general, the foundation work is determined according to the pipe type, soil quality, bearing capacity, construction method, load condition, and excavation condition, and the general foundation type is as follows.

Table 4-73 Foundation Type by Ground

Category	Harc	l Soil	Soft	Soft Soil		Extremely Soft Soil	
	Sand support for Crushed rock for Wooden support	oundation	Concrete foundationCrushed rock foundation		Pile foundation Reinforced concrete foundation		
Hard Pipe							
	• Sand	Crushed Rock	Concrete	Wooden Support	Reinforced Concrete	Concrete + Sand	
	Sand foundation		Sand support for Bed earth work Soil cement four	fiber foundation	foundation • Soil cement foundation		
Soft Pipe							
	Sand	Bed f	Earth Work Fiber	Soil Ceme	nt Sand -	+ Ladder Support	

In this plan, the foundation type is sand foundation in principle, and the appropriate foundation type is selected according to the ground type.

4.3.4.4.2 Sewer Pipe Type Selection

Sewage pipe types should be selected through consultation with the client at the detailed design stage. In the feasibility study, applicable pipe types are recommended in consideration of pipe types that can be produced in Bangladesh, smooth supply of materials when supplied from overseas, and convenience of maintenance such as repair and replacement after sewer installation. Pipe types applicable to this project are as follows;

It was investigated that HDPE pipes and uPVC pipes can be produced in Bangladesh. In the case of branch sewage pipe D300mm or less, HDPE pipe was applied in consideration of future maintenance and replacement. In the case of trunk line and D400mm or more, GRP applied in Catchment-1, which has high watertightness and is universal in overseas regions and is being implemented by the project implementing agency, was applied.

Table 4-74 Comparison of Sewer Pipe Type

Table 4-74 Comparison of Sewer Pipe Type							
Category	GRP	DCIP	uPVC	HDPE			
Overview	Pipes with improved toughness and pressure resistance by adding polymer or unsaturated polyester resin, fillers, and fiber-reinforced materials	Pipes manufactured by melting materials suitable for ductile cast iron, spheroidizing graphite and centrifugal casting, and then applying cement lining	Circular pipe molded into an O-ring shape by Caterpillar Mold by mixing PVC resin and additives	 As a product made of HDPE COMPOUND, the inner and outer surfaces of the pipe are smooth. Production of polyethylene by extrusion 			
Shape		NECHRAIGAL.					
Standard	• D150 ~ D2400mm	• D80~D1200mm	• D100~D400mm	• D110~D630mm			
Bonding Method	Rubber ring socket connection	KP mechanical bonding	Rubber ring socket connection	Butt fusion or electronic socket connection			
Advantages	High impact strength and low elasticity Salt Resistant Easy connection High water tightness Universality in overseas regions	Easy bonding, high watertightness and internal and external strength Flexibility for various types and field conditions Same standard	High strength and physical properties Corrosion resistance, durability and easy joining High water tightness and cost efficiency Easy socket connection reduces cost and time Wrinkled and easy to cut	Easy to transport due to light weight, flexible piping for easy handling Simple connection and easy construction			
Disadvantage	Expensive glass fiber material	Heavy, transport and lifting equipment required High cost and used as a transfer pipe	Only 600mm or less is possible, so it is not applicable to large sizes	Heat-sealing expertise required Electronic socket method joints are expensive			
Selection	Applied to sewers of 400mm or more			Applied to sewers of 300 mm or less			

4.3.4.4.3 Sanitary Sewer Plan

4.3.4.4.3.1 Sanitary Sewer Plan

For the sanitary sewer of this project, it was established to enable gravity flow, and a pump facility is planned to collect sewage by pumping it in the case of a low-lying lands area with a large difference in ground elevation.

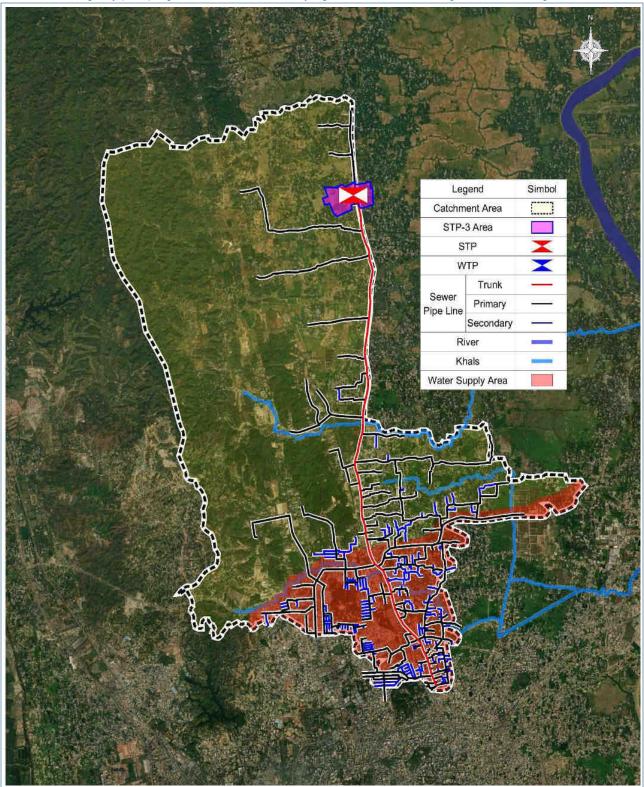


Figure 4-26 Sewer Pipe Facility Plan (Total)

In this study, it is planned to introduce the sewerage system to five wards in priority where current water service coverage under CWASA is available out of seven wards in Catchment-3 in the consideration of project budget. Sewerage system for low-lying area require pumping station will be installed in the Phase 2.

Table 4-75 Phase Plan of Sanitary Sewer (m)

Category	Total	Phase1	Phase2	Remarks
Total(m)	93,400	58,226	35,134	
Trunk Sewer	8,900	8,900	-	
Primary Sewer	58,991	29,335	29,656	
Secondary Sewer	25,509	20,031	5,478	

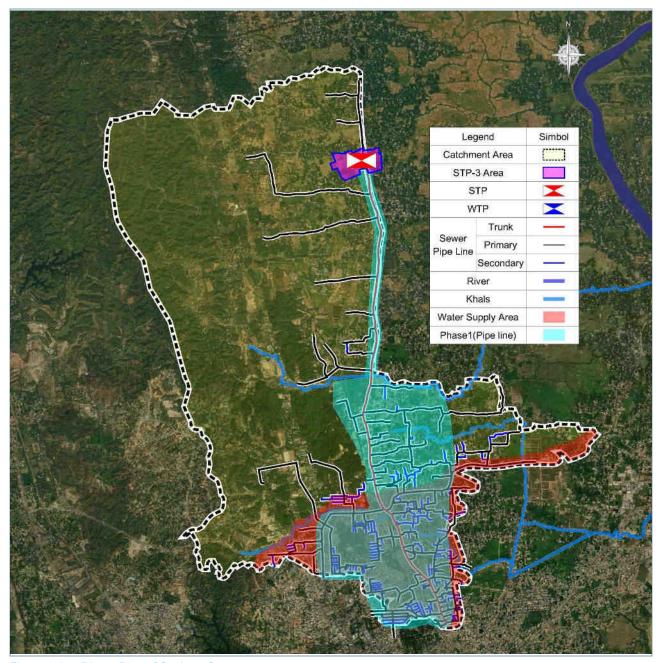


Figure 4-27 Phase Plan of Sanitary Sewer

In this project, a sanitary sewer will be installed for gravity flow. Trunk sewer, primary sewer and secondary sewer is planned in the consideration of topography and design factor of sewers. Excavation method is planned as trench method for the less than 6m depth and trenchless method for the more than 6m depth. Detail of sanitary sewer of Phase 1 is as below.

Table 4-76 Detail of Sanitary Sewer for Phase 1

Category	Total (m)	Trunk	Primary	Secondary
Total(m)	58,266	8,900	29,335	20,031
D200mm	32,802	-	12,771	20,031
D300mm	7,833	-	7,833	-
D400mm	3,962	300	3,662	-
D500mm	1,405	100	1,305	-
D600mm	1,400	400	1,000	-
D700mm	3,664	900	2,764	-
D800mm	200	200	-	-
D900mm	300	300	-	-
D1000mm	200	200	-	-
D1200mm	800	800	-	-
D1300mm	700	700	-	-
D1400mm	1,100	1,100	-	-
D1500mm	1,400	1,400	-	-
D1600mm	2,500	2,500	-	-

Table 4-77 Detail of Sanitary Sewer for Phase 1 by Excavation Depth (m)

Table 4-77 Detail of Sanitary Sewer for Phase 1 by Excavation Depth (m)										
Category	Category Total			Tre	Trenchless					
Calegory	iotai	Sub-T	<2m	2~3m	3~4m	4~5m	5~6m	Sub-T	6~10m	>10m
Total(m)	58,266	45,962	15,802	16,517	6,599	4,313	2,731	12,304	10,504	1,800
D200mm	32,802	32,322	15,402	12,299	2,814	1,407	400	480	280	200
D300mm	7,833	6,839	400	2,418	1,100	1,940	981	994	894	100
D400mm	3,962	3,396	-	1,000	1,430	466	500	566	566	-
D500mm	1,405	1,305	-	300	755	100	150	100	100	-
D600mm	1,400	1,200	-	400	500	200	100	200	200	-
D700mm	3,664	800	-	100	-	200	500	2,864	2,864	-
D800mm	200	-	-	-	-	-	-	200	200	-
D900mm	300	-	-	-	-	-	-	300	300	-
D1000mm	200	-	-	-	-	-	-	200	200	-
D1200mm	800	-	-	-	-	-	-	800	800	-
D1300mm	700	-	-	-	-	-	-	700	700	-
D1400mm	1,100	-	-	-	-	-	-	1,100	900	200
D1500mm	1,400	-	-	-	-	-	-	1,400	1,300	100
D1600mm	2,500	100	-	-	-	-	100	2,400	1,200	1,200

4.3.4.4.3.2 Trunk Sewer

Route of trunk sewer planning in this project is planned to be laid along the N106 road, starting from West Sholashahar, the downtown area, in the direction of Fatehabad, the sewage treatment facility. Layout of trunk sewer is as below.

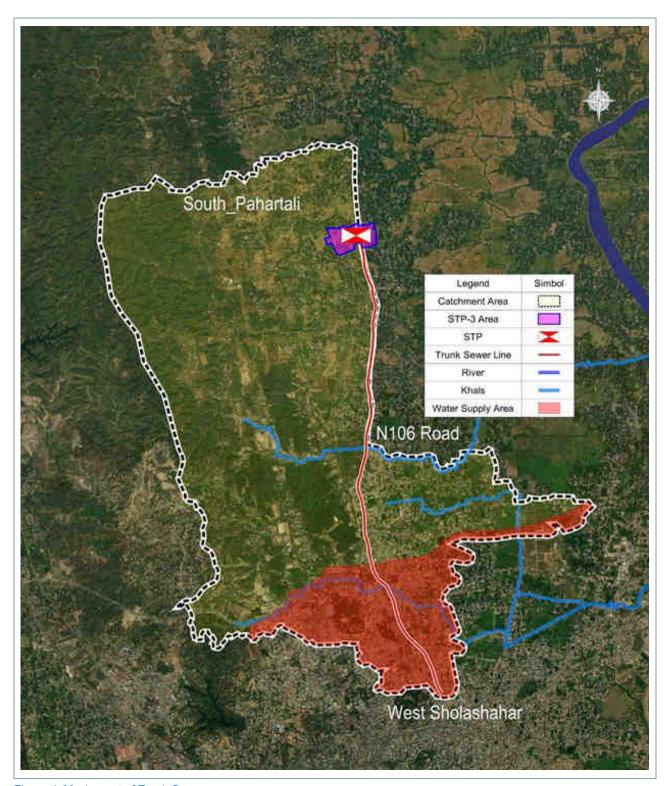


Figure 4-28 Layout of Trunk Sewer

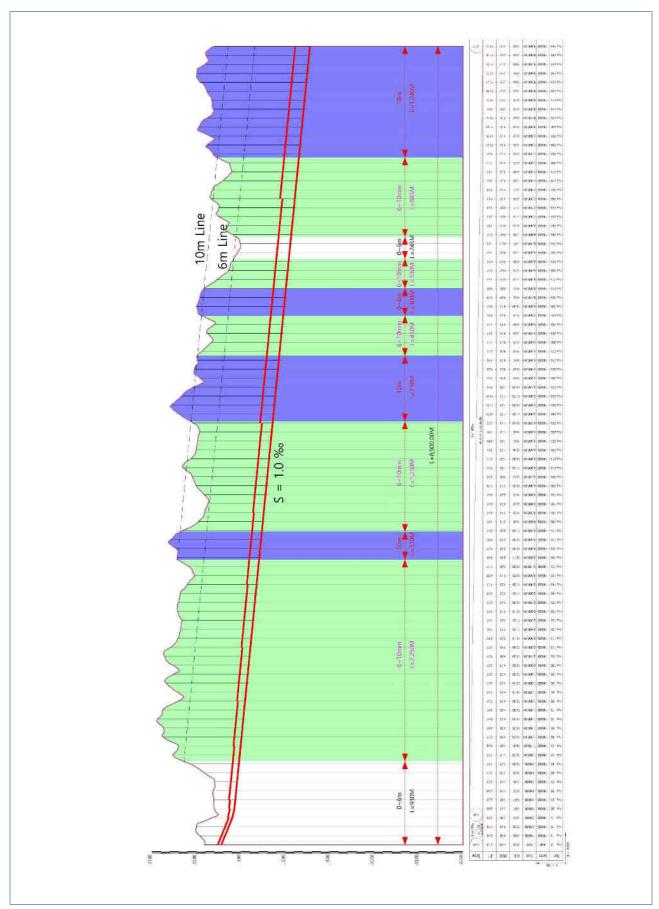


Figure 4-29 Longitudinal Plan for Trunk Sewer Pipe

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

Trunk sewer is planned as a gravity flow with the diameter of D400~D1600mm, longitudinal plan of sewer is be maintained at 1‰.

The depth of the trunk sewer is planned to be installed up to 12m due to the topographical characteristics. It is planned to implement trench excavation for a depth of 0 to 6m, and to install a trenchless method for sewers over 6m.

Table 4-78 Detail of Trunk Sewer for Phase 1 by Excavation Depth (m)

Cotomony	Total			Trei	nch	· ·			Trenchless	
Category	Total	Sub-T	<2m	2~3m	3~4m	4~5m	5~6m	Sub-T	6~10m	>10m
Total(m)	8,900	1,000	-	500	300	100	100	7,900	6,400	1,500
D200mm	-	-	-	-	-	-	-	-	-	-
D300mm	-	-	-	-	-	-	-	-	-	-
D400mm	300	300	-	100	200	-	-	-	-	-
D500mm	200	200	-	200	-	-	-	-	-	-
D600mm	300	300	-	200	100	-	-	-	-	-
D700mm	900	100	-	-	-	100	-	800	800	-
D800mm	200	-	-	-	-	-	-	200	200	-
D900mm	300	-	-	-	-	-	-	300	300	-
D1000mm	200	-	-	-	-	-	-	200	200	-
D1200mm	1,500	-	-	-	-	-	-	1,500	1,500	-
D1300mm	-	-	-	-	-	-	-	-	-	-
D1400mm	1,100	-	-	-	-	-	-	1,100	900	200
D1500mm	1,400	-	-	-	-	-	-	1,400	1,300	100
D1600mm	2,500	100	-	-	-	-	100	2,400	1,200	1,200

4.3.4.4.3.3 Primary & Secondary Sewer

It is planned to install primary & secondary sewer for the gravity flow for Phase 1. Branch sewer of the low-lying land will be installed with pumping station in the Phase 2.

Diameter of the primary & secondary sewer is D200 \sim D700mm, and the flow velocity of the sewer is planned to be maintained at 0.3m/s or more and the longitudinal gradient of the initial pipe is maintained at 5‰ or more.

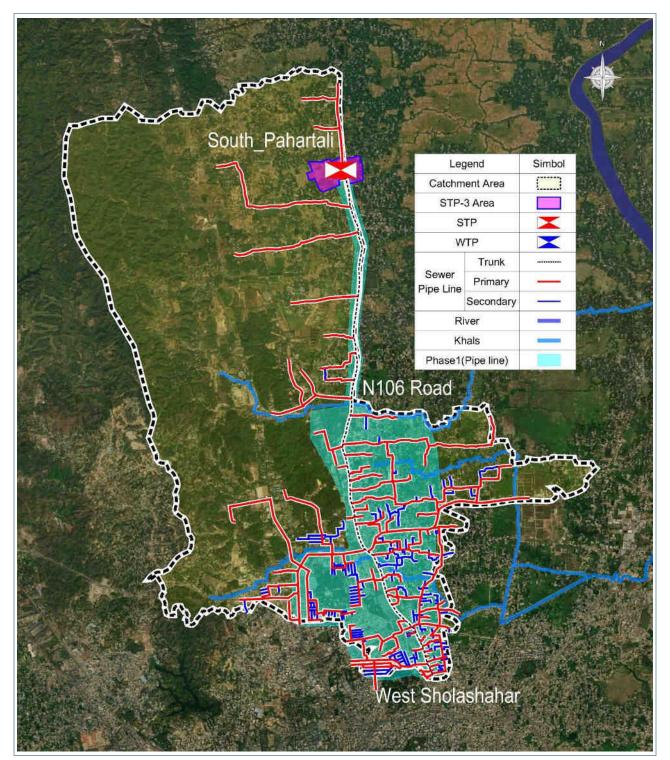


Figure 4-30 Layout of Primary & Secondary Sewer

Figure 4-31 Longitudinal Plan for Primary Sewer (Representative)

Primary sewer & secondary sewer is planned to be connected to trunk sewer. It is planned to implement trench excavation for a depth of 0 to 6m, and to install a trenchless method for sewers over 6m. Manhole is planned to be installed at intervals of 75 to 100m, and the detail of manhole is as follows.

Table 4-79 Detail of Primary & Secondary Sewer for Phase 1 by Excavation Depth (m)

Catagory	Total			Tre	nch				Trenchless	
Category	Total	Sub-T	<2m	2~3m	3~4m	4~5m	5~6m	Sub-T	6~10m	>10m
Total(m)	49,366	44,962	15,802	16,017	6,299	4,213	2,631	4,404	4,104	300
Sub-Total (Primary)	29,335	24,931	1,780	10,008	6,299	4,213	2,631	4,404	4,104	300
D200mm	12,771	12,291	1,380	6,290	2,814	1,407	400	480	280	200
D300mm	7,833	6,839	400	2,418	1,100	1,940	981	994	894	100
D400mm	3,662	3,096	-	900	1,230	466	500	566	566	-
D500mm	1,305	1,205	-	200	755	100	150	100	100	-
D600mm	1,000	800	-	100	400	200	100	200	200	-
D700mm	2,764	700	-	100	-	100	500	2,064	2,064	-
Sub-Total (Secondary)	20,031	20,031	14,022	6,009	-	-	-	-	-	
D200mm	20,031	20,031	14,022	6,009	-	-	-	-	-	

Table 4-80 Detail of Manhole for Phase 1 (nos)

Туре	Diameter	Total	<2m	2~3m	3~4m	4~5m	5~6m	6~10m	>10m
Tot	al	801	213	225	92	60	40	145	26
	D200mm	441	207	164	38	19	6	4	3
	D300mm	108	6	33	15	26	14	12	2
No.1 (D900mm)	D400mm	56	-	14	20	7	7	8	-
(Boodinin)	D500mm	22	-	5	11	2	2	2	-
	D600mm	22	-	6	8	3	2	3	-
	D700mm	52	-	3	-	3	7	39	-
No.2 (D1200mm)	D800mm	3	-	-	-	-	-	3	-
(D1200IIIII)	D900mm	4	-	-	-	-	-	4	-
No.3	D1000mm	3	-	-	-	-	-	3	-
(D1500mm)	D1200mm	11	-	-	-	-	-	11	-
	D1300mm	10	-	-	-	-	-	10	-
No.4 (D1800mm)	D1400mm	15	-	-	-	-	-	12	3
(100011111)	D1500mm	20	-	-	-	-	-	18	2
No.5 (D2100mm)	D1600mm	34	-	-	-	-	2	16	16

4.3.5 Pumping Station (Phase 2)

4.3.5.1 Introduction

Wastewater Pumping stations are used to lift wastewater from lower to higher elevation, particularly where the elevation of the source is not sufficient by gravity flow and/or when the use of gravity conveyance will result in excessive excavation depths and high sewer construction costs.

In this study, it is planned to introduce the sewerage system to five wards in priority where current water service coverage under CWASA is available out of seven wards in Catchment-3 in the consideration of project budget. Sewerage system for low-lying area require pumping station will be installed in the Phase 2.

4.3.5.2 Pumping Station Planning

4.3.5.2.1 Design Standard and Installation Plan

Table 4-81 Pumping Station Design Criteria & Installation Plan

Category	Design Criteria	Installation Plan		
Pump Discharge Volume	Maximum sewage volume per hour	Maximum sewage volume per hour		
Pump operating method	Automatic and alternate operation by the level of suction ponds	Automatic and alternate operation by the level of absorbing wells		
Pump type	Select types in consideration of maintenance and closure	Submersible grinder pump / non-clogging type of submersible pump		
No. of pumps	• 2 sets or more including reserve	Plan 2 sets or more including stand-by		
Capacity of suction wells	Consider the frequency of pump operation	Secure the capacity of suction wells in consideration of the frequency of pump operation		

4.3.5.2.2 Pump Station Type Selection

Table 4-82 Pump Station Type Selection

Category	Circular Manhole Type	Square Manhole Type		
Figure	Discharge	Screen		
Characteristics	 Possible of up to 3.0m³/min but up to 1.6 m³/ min is applied, in general Installation of simple screen facilities (brief basket, etc.) 	 Apply pump stations in 1.6 m³/min or more for the facility capacity of this round Installation of automatic screen facilities 		
Recommendation	•			

4.3.5.2.3 Pumping Station

Pumping station is planned for the low-lying area where gravity flow is not possible to transfer the wastewater to the higher elevation and it will be implemented in Phase 2 in the consideration of sewage service coverage of the project.

Table 4-83 Detail of Pumping Station

Site	Name	Capacity (m³/min)	St Elev.	art Inv.	Elev.	nd Inv.	Max. Elev. (m)	Specification
Ward 2	PS-1	1,410	6.25	2.25	8.90	7.00	8.90	1.41m³/min x 9.75mH
Ward 2	PS-2	0.676	1.35	-2.65	6.50	4.50	7.70	0.68m³/min x 12.15mH
Ward 3	PS-3	0.676	4.60	0.60	9.30	7.00	9.30	0.68m³/min x 11.40mH
Ward 3	PS-4	0.676	4.10	0.10	10.00	8.30	10.00	0.68m ³ /min x 13.20mH
Ward 3	PS-5	0.310	4.30	0.30	13.40	11.20	13.40	0.41m ³ /min x 15.90mH
Ward 3	PS-6	0.155	23.30	19.30	29.00	27.30	29.00	0.16m ³ /min x 13.00mH
Ward 7	PS-7	0.705	9.00	5.00	14.00	5.83	14.00	0.71m ³ /min x 13.00mH

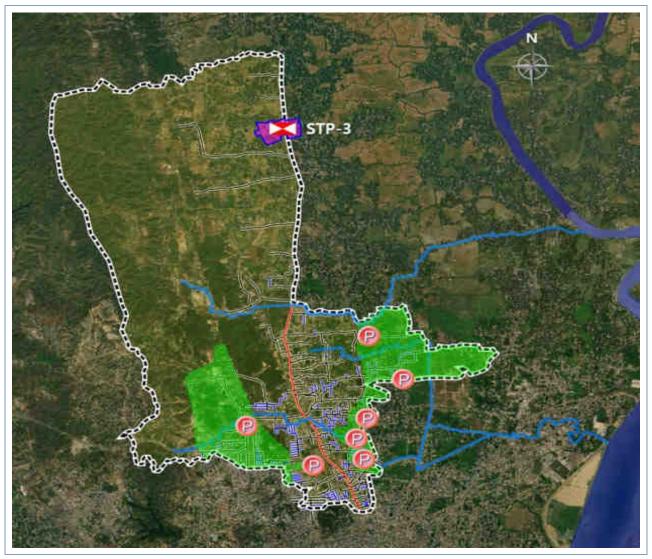


Figure 4-32 Location of Pumping Station

4.3.6 Household Connection

4.3.6.1 Introduction

In this feasibility study, a household connection plan was established in order to flow sewage generated from residential, commercial buildings in the project area into the sewage system. If the household connection is not installed, the generated sewage is not transported to the sewage treatment plants, resulting in problems such as a decrease in the amount of inflow sewage and a decrease in treatment efficiency due to a decrease in the quality of the inflow water.

4.3.6.2 Relevant Regulation

CWASA is drafting the water and sewerage connection regulation (CWASA, 2023) with the cooperation of the JICA and major clauses regarding the household connection fee is as below.

- All owners of holdings shall take sewerage connection within six months of the completion of sewerage system in an area constructed by the Authority.
- The applicant shall bear the expense of purchasing pipes and other materials and the cost of construction/ replumbing work. The applicant shall be exempted from the payment of the cost of construction/ plumbing work if the applicant applies for property connection in parallel to the sewerage construction by the Authority in the area where the holding of the applicant is located or within six months of the completion of sewerage system in the area.

4.3.6.3 Finance of Household Connection

In the previous ODA projects implemented in the developing countries, household connection was implemented separately with the cost of the recipient countries. However, as the completion of household connection was delayed, the wastewater from the project area was not transferred to the sewage treatment plant and operation efficiency of the STP was decreased. Lessons learned from the previous project, household connection is financed and implemented by MDB in the recently in Bangladesh.

In this feasibility study, the GOB will bear the cost of household connection with the discussion of KEXIM and CWASA, the procurement method will be decided to select the contractor during the detailed design stage.

Table 4-84 Finance of Household Connection

	Category	Fund Source	Finance of Household Connection	Remarks
Relevant	Catchment-1 (PESSCM-1)	GOB	GOB	
Plans	Catchment-5	AFD	AFD	
	Catchment-2&4	JICA	JICA	
	This Study Catchment-3)	EDCF	GOB	

4.3.6.4 Household Connection

Household connection survey is conducted in the feasibility study for randomly selected 100 houses to categorize the household connection types as per the buildings in the project area for the project cost estimation. Detail household connection survey shall be implemented in the detailed design stage.

In this study, it is planned to introduce the sewerage system to five wards in priority where current water service coverage under CWASA is available out of seven wards in Catchment-3 in the consideration of project budget. Sewage Service coverage of the Catchment-3 is 0% at the end of 2022 and is planned to achieve 60.0% by 2030 after completion of the project and to achieve 80.0% by 2070 in the final target year.

In this project, household connection is composed of the property connection from trunk/primary/secondary sewer to the public inspection chamber and realignment within the property from public inspection chamber to plumbing work within the property including closure of septic tank for the efficient utilization of the wastewater plant and ultimately successful achievement of the project outcome.

Table 4-85 Results of Household Connection Survey (Nos.)

Category	Building Type	Survey Results	Plan of This Project
Type 1	Residential Building with 8 or more floors	13	1,200
Type 2	Residential Building with 2-7 story	63	6,000
Type 3	Residential Building with single story	11	2,000
Type 4	Commercial Building	13	800
Total		100	10,000

Type 2

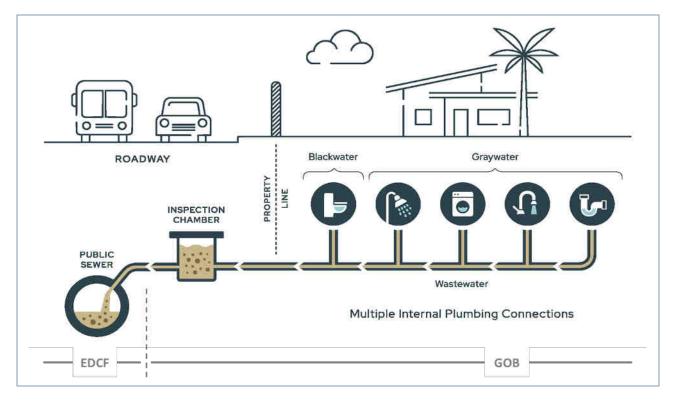

kunhwa Enjinuring & Consulting

Table 4-86 Phase Plan of Household Connection

Category	Unit	2030	Phase 1 (2040)	Phase 2 (2055)	Phase 3 (2070)	Remarks
Projected Population	pers.	473,904	598,614	810,008	1,048,808	
Sewage Service Coverage	%	60.0	65.0	72.5	80.0	
Sewage Service Population	pers.	284,342	389,099	587,254	839,046	
Household Connection	Nos.	10,936	14,965	22,586	32,271	26 pers. per connection

Table 4-87 Scope of Household Connection

Category		Remarks
Property Connection	From trunk/primary/secondary sewer to the public inspection chamber	
Realignment within the property	From public inspection chamber to plumbing work within the property	
	including closure of septic tank	

4.4 Architectural, Mechanical, Electrical & Instrumentation Works

4.4.1 Architectural Works

4.4.1.1 General

Architectural plan should ensure that the basic functions of sewage facilities, which are the purpose of this project, can be performed most faithfully and smoothly, and maintenance and management according to the performance of the functions can be performed reasonably and economically. Major consideration of architectural works is as below.

- Layout of facilities that prioritizes the sewage treatment process
- Traffic line and space planning considering the organic relationship between Sewage treatment plant
- Traffic line and architectural plan considering maintenance convenience
- Emphasis on a clean image as a sewage treatment facility
- Land use and layout plan considering scalability of facilities to be expanded in the future
- Maximization of land efficiency by arranging required facilities by area
- Increased usability of buildings through integrated arrangement of related facilities
- Organic connection with treatment facilities considering maintenance
- Structural planning considering maximum load conditions
- Basic design utilizing the surrounding conditions and ground conditions to the maximum
- Minimization of maintenance costs through rational selection of building materials
- Securing economic feasibility by reducing buildings through an integrated layout plan
- Introduction of an economical facility system that is easy to maintain
- Pleasant indoor environment plan for workers

4.4.1.2 Architectural Plan

Architectural buildings of the project are grit removal and inlet pumping station, sludge thickening and dewatering facility, faecal sludge treatment building, administration building, blower and generator room, staff quarters, chemical buildings and all of buildings are planned as reinforced concrete structure.

Table 4-88 Plan of Major Building

No.	Name	Specification	Remarks
1	Grit Removal and Inlet Pumping Station	B29.88m X L12.90m X 10m X 1 Floor	
2	Sludge Thickening and Dewatering	B39.90m X L15.15m X 10m X 1 Floor	
3	Faecal Sludge Treatment Building	B39.90m X L15.15m X 7m X 1 Floor	
4	Administration Building	B49.80m X L20.10m X 3m X 2 Floor	
5	Blower and Generator Room	B39.90m X L15.15m X 7m X 1 Floor	
6	Staff Quarters	B48.67m X L15.40m X 3m X 1 Floor	
7	Chemical Building	B25.05m X L20.10m X 6m X 1 Floor	

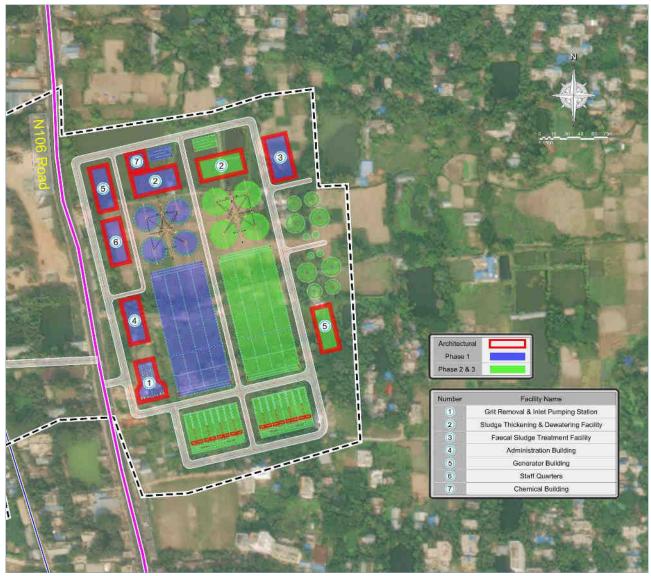


Figure 4-33 Layout of Major Building

4.4.1.3 Structural Plan

In this project, the structural plan of the architectural building is planned in consideration of the following matters, and the structural planning standards should be established according to the site conditions during the detailed design.

4.4.1.3.1 Safety

- Appropriate foundation selection by geological survey
- Structural design considering natural disasters
- Consider predictable loads

4.4.1.3.2 Economics

- Application of unified structure system
- Reduced construction period by using standardized members
- Considering the maintenance management of structures

4.4.1.3.3 Constructability

- Simplification of members and connections
- Minimization of temporary work and field work
- Reducing the construction period and securing skilled manpower
- Adoption of structural form considering constructability

4.4.1.3.4 Usability

- Minimization of vibration and long-term deflection of long-span structural parts
- Vertical and horizontal displacement review

4.4.1.3.5 Analysis of Frame Structure Type

The frame structure type of a building structure can be largely classified into three types. In this feasibility study, the reinforced concrete structure type is planned, but during the detailed design, the frame structure type should be applied according to the site conditions, material supply and demand, and the function of the structure.

Table 4-89 Frame Structure of Building

Category	Concrete type	Steel Type	Block Type
Structure Type			
Advantages and Disadvantages	Unified steel structure, stable type Suitable for span within 12m Increased architecture period due to the wet structure	 Fixture type of structures, good at flexibility Simple architecture at the site due to fabrication in the factory Separate actions required due to the weak flame resistance 	 Suitable for lower floors and simple buildings Possible of fabrication at the site with simple works Separate reinforcing required due to the week traversal force

4.4.1.3.6 Analysis of the Floor Structure

The floor structure type of a building structure can be largely classified into three types, and the floor structure type should be applied according to the structure's function and working load.

Table 4-90 Floor Structure of Building

Category	Beam & Girder System	Wide Girder System	Flat Slab System
Structure Type			
Advantages and Disadvantages	Advantageous for drooping and vibration Reduced slab thickness Increased structure quantity for small span	Advantageous for constructing forms Increased slab thickness Decreased structure quantity for small span	Advantageous for constructing forms Reduced floor height and increased structure quantity Need of architecture control for the distribution of rebar

4.4.2 Mechanical Works

4.4.2.1 Introduction

Mechanical equipment is an important facility for the operation and maintenance of sewage treatment plants, and it should be trouble-free and convenient to operate. Therefore, each system and each mechanical facility should have high stability and reliability, simple facility configuration, and easy operation and maintenance through automation. In addition, an economical facility plan that can reduce construction and operating costs while satisfying the function should be established.

Looking at the water treatment method, the current facility capacity is 75,000m³/day, and the standard activated sludge method is used, and it is planned to expand to 75,000m³/day in the future in the same way. The disinfection facility is planned to be disinfected by introducing liquid chlorine, and the sludge treatment process adopted the Thickening→digestion→Dewatering process.

4.4.2.2 Design Scope

Mechanical design is applied to various mechanical facilities such as water treatment and sludge treatment necessary for final discharge by treating sewage flowing into the sewage treatment plant.

4.4.2.3 Design Consideration

Stability of treated water quality, guarantee of performance and connectivity of equipment, energy saving and economic efficiency, convenience of maintenance, prevention of environmental pollution, proper facility arrangement, and convenience of work environment were reflected as key elements of the design.

Table 4-91 Mechanical Design Consideration

Category	Consideration
Stability of treated water quality	 Ensuring shock load responsiveness according to flow rate and water quality fluctuations Operation by series and rational design of equipment type and capacity
Performance guarantee and connectivity	 Appropriate design (optimal machine, appropriate material selection) Consideration of equipment protection safety system, corrosion prevention, minimization of work flow Considering connectivity with planned expansion facilities
Energy saving and economical	Selection of energy-saving equipment and reuse of treated water Minimizing initial investment and maintenance costs and maximizing device performance
Maintenance	Considering the integrated operation management system Equipment layout considering maintenance and check-in/out of equipment Secure spare parts and select compatible devices
Prevention of Environmental Pollution	 Prevention of secondary pollution (odour control, noise, vibration and waste treatment) Comply with the water quality standards set forth in the relevant laws and regulations and harmonize with the surrounding environment
Arrangement of equipment	Equipment layout that facilitates vehicle, piping and maintenance circulation planning Equipment layout considering maintenance and operation management aspects
Working environment	 Proper working space secured Design that does not cause environmental pollution Safety and hygiene facilities are fully equipped in accordance with relevant laws and regulations.

4.4.2.4 Criteria for Selecting Major Equipment

When selecting facilities for Sewage treatment plant, construction cost, maintenance cost, performance, etc. should be compared and reviewed considering the design method of the entire treatment plant, construction and maintenance conditions, etc. To ensure process efficiency and efficient circulation route for maintenance.

In addition to the function of the sewage treatment plant, facilities and materials should be selected by comprehensively reviewing the facility's overall uniqueness, image improvement, economic feasibility, and maintenance convenience. To consider smooth operation of hydraulic.

Plan the selection of major facilities and determine their capacity so that they can be connected with the operation and maintenance of Sewage treatment plant, and select facilities that are economical and can promote energy conservation.

4.4.2.5 Key Points of Mechanical Facility Configuration

In this chapter, prior to design, the main issues in the process composition of the mechanical field, such as facility design and installation (including piping work) are summarized as below.

Table 4-92 Key Points of Mechanical Facility Configuration

Category	Design Focus	Facility
Grit chamber facility	 Plans for screen equipment to protect impurities and machinery Reduces the load of the downstream treatment process and homogenizes the sewage properties Speed control or selection of two or more pumps with different capacities 	Screen facilitiesRound Sand RemoverSubmersible Mixed Flow Pump
Settling basin facility	Configuration of automatic extraction system for sludge extraction	Electric gate valve + sludge pump
Biological reactor facility	 Installation of a variable control blower and air conditioning control device Full-scale aeration system installation 	Gear booster blower Plate Diffuser
Disinfection and discharge facilities	 Removal of pathogenic bacteria and consideration of field conditions Pump selection suitable for low head and high flow operation conditions Improved with an electric crane 	 Liquid chlorine disinfection equipment Overhead crane Double suction volute pump
Anaerobic digestion facility	Production of bio gas using an anaerobic digestion tank	Anaerobic digestion tank
Power generation and heat source supply facilities	 Temporary storage of bio gas generated from anaerobic digestion tank Maintaining optimal operating conditions for bio gas purification Establishment of stable refinery facilities and simplification of facilities Composition of bio gas power generation facilities that can maximize power generation efficiency Configuration of hot water supply facilities for heating the digester 	 Extinguishing gas reservoir Dehumidification facility Desulfurization facility Fire Gas Generator Hot water boiler
Odour removal equipment	 Improving the working environment of the driver and blocking residents' perception of facilities that they hate Ease of maintenance and reduction of maintenance costs Complete odour collection and accurate odour control air volume calculation 	Chemical liquid washer and deodourizer

4.4.2.6 Sewage Treatment Plant

4.4.2.6.1 Grift System

Since the influent sewage contains various impurities and sand, impurities and sediments should be removed so as not to adversely affect subsequent water treatment and sludge treatment processes. It is therefore designed for chip removal by coarse and fine particle screens and sand removal by sand recovery machines.

4.4.2.6.1.1 Screen Equipment

Large impurities are removed by a dense and fine sieve installed at the front of the settling paper, and small-sized impurities are removed by a fine screen installed at the rear of the settling paper. Conveyors, containers, hoists, etc. are installed to facilitate carrying out and processing of foreign substances lifted by the screen. This process is configured to work automatically. Automatic screens generally include double chain type screens, hydraulic screens, and rotary screens. For this treatment, the screen and the conveyor to remove impurities are automatically interlocked.

Table 4-93 Comparison of Screen Equipment

Category	Double Chain Screen	Hydraulic Screen	Rotary Screen
Shape			
Structure	Rakes connected to guide rails on either side of the frame and a chain that continuously rotates up and down remove debris from the front of the bar.	As the hydraulic screen moves through each waterway, a rake is used to move the impurities in the water to the water surface to remove the impurities.	The rake attached to the chain that rotates by the driving device descends to the back of the screen, rotates to the front, and raises, scrapes the impurities caught on the screen, and lifts and removes them to the top.
Advantage	Rake-up is continuous. Easy sealing with casing Most installations	Maintenance is easy as the mechanical part is above water Able to scrape out large impurities	 Remove a large number of impurities in a short time Individual operation is possible, so there is no damage due to inoperability
Disadvantage	 Stroke adjustment is required by extending the chain. Maintenance is difficult because there are gears in the water. 	Raking is intermittent The effective screen width is narrow compared to the paper width.	 Inconvenient maintenance in the case of parts failure in the underwater part High initial investment cost compared to other equipment
Selection	•		

4.4.2.6.1.2 Grit Removal Equipment

Grit removal equipment should facilitate the subsequent process by removing precipitated soil and non-perishable inorganic substances from the inflow sewage that has passed through the front screen, and by securing the efficiency of pretreatment, treatment efficiency such as facility closure due to wear and deposition of facilities degradation should be avoided. When selecting equipment, work environment such as abrasion resistance, corrosion resistance, and odour should be considered.

Table 4-94 Comparison of Grit Removal Equipment

1able 4-34	able 4-94 Comparison of Grit Removal Equipment						
Category	Vortex Type	Driving Type T-Bucket Lifting Machine	Double Chain Conveyor (V-Bucket Anti-Excavation Prevention Type)				
Shape							
Structure	Sewage and sediment are separated by centrifugal force in the cylindrical grit tank, and when a certain amount of sediment accumulates, the sediment is lifted with a pump.	 A rail is installed on the upper part of the grit, and the bridge rail drives left and right, and the grit is lifted while moving the upper rail by attaching a V-bucket to the endless track chain. 	By attaching and circulating several V-buckets on the caterpillar track, the deposited soil is continuously lifted from the end of the waterway and transported to the conveyor on the ground.				
Advantage	Constant removal efficiency regardless of flow rate fluctuations Odour collection and easy maintenance	Continuous operation is possible and suitable for large-capacity sewage treatment plants	 Continuous operation and large- capacity sand removal is possible Easy to operate automatically Many installations record 				
Disadvantage		 Not possible to cover the grit pad Sand or sewage from the bucket makes the surroundings unclean 	There are many worn places such as chains, shoes and sprockets, so it is not easy to repair and inspect				
Selection	•						

4.4.2.6.2 Inlet Pumping Station Facilities

The inflow pump facility is planned to pump the sewage from which impurities and sediment have been removed from the grit pond to the subsequent process (primary settling basin) at the pumping station.

4.4.2.6.2.1 Inlet Pump

The pump facility capacity is planned based on the hourly maximum sewage volume, and the number of pumps is determined by considering the planned sewage volume and Phased construction. Since the type of pump has a great influence on the size and maintenance of the pump room, the characteristics of each pump should be thoroughly reviewed before selecting a pump suitable for the purpose of use. etc. should be considered.

In selecting a model, after reviewing pump efficiency and characteristics, select a suitable type, and plan to enable transfer amount control (number control, rotation speed control, etc.) according to inflow fluctuations.

Table 4-95 Comparison of Inlet Pump

Table 4-95	Comparison of Inlet Pump		
Category	Submersible Mixed Flow Pump	Submersible Centrifugal Pump	Vertical Mixed Flow Pump
Shape			
Structure	The motor and pump are installed underwater in a completely sealed state in a suction vertical cylindrical casing, pumping through the circular casing by the centrifugal force of the impeller and the lifting force of the guide vane	 Composed of an underwater motor and an automatic separation device, installed underwater Casing, rotor, motor all-in-one 	The form in which the flow of fluid discharged from the impeller is on the conical surface with the center of the main axis as the axis
Advantage	 Less change in quantity due to change in suction lift Variance range of flow rate according to head change is large, so the range of flow control by rotation speed control is wide Excellent efficiency when pumping large capacity 	 Pumping station building may be small The pump is always below the water level, so there is no need to manipulate the water level and noise is low Simple structure and easy to install, disassemble and assemble 	 Variety of quantity is small for change of suction lift Easy to repair as the driving part of the electric pole is outside the submerged area Extremely high efficiency under large-capacity pumping conditions
Disadvantage	Difficulty shut off driving Unsuitable for lifting conditions over 20m in terms of structure	 Since it is installed underwater, safety devices such as motor leakage detection are required. In the case of the automatic detachable device type, leakage occurs at the junction and the efficiency is lowered 	 A shaft sealing device and a lubricating device are required, and there are many attached machines The pumping station is the largest
Selection	•		

Table 4-96 Inlet Pump Capacity and Operation

Catego	ory	Planı Sewage ' m³/d			31.3 n	Pum n³/min	p Ope	ration		n³/min		Discharge Volume (m³/min)
	Daily avg.	60,000	41.7	•	0			•	0			46.9
Phase 1	Day max.	75,000	52.1	•	0			•	•			62.5
	Hourly max.	90,000	62.5	•	0			•	•			62.5
	Daily avg.	90,000	62.5	•	0	0	0	•	•			62.5
Phase 2	Day max.	112,500	78.1	•	•	0	0	•	0			78.2
	Hourly max.	135,000	93.8	•	•	0	0	•	•			93.8
Phase 3	Daily avg.	120,000	83.3	•	0	0	0	•	•	•	•	93.7
	Day max.	150,000	104.2	•	•	0	0	•	•	•	0	109.4
	Hourly max.	180,000	125.0	•	•	0	0	•	•	•	•	125.0

Note) ●: constant speed, ●: Inverter operation, ⊚: spare

4.4.2.6.2.2 Agitator

The agitator is used to prevent sedimentation of sludge and to make the water quality uniform in the flow control tank. The agitator should be designed in such a way that the agitation effect of the flow control tank is good and operation and maintenance are easy.

Table 4-97 Comparison of Agitator

Category	Submersible Horizontal Agitator	Upright Agitator
Shape	Y	
Structure	The motor and impeller are installed in the corner of the water as an integral type to form a swirling flow	There is a driving device at the top of the tank, and the impeller is connected by a shaft to form vertical swirling flow
Advantage	 Relatively low maintenance cost due to low power and high efficiency Built-in motor protection device makes it possible to check when a motor problem occurs There is no vibration and noise as the driving part is underwater Low price compared to other types 	 Convenient maintenance as the driving part is exposed at the top As the impeller is located in the center of the tank, there is little turbulence, so the flow of the mixed solution in the reaction tank is maintained in the form of a plug flow to prevent short-circuit flow Prevents leakage of structures due to less work on anchor bolts during installation
Disadvantage	 Water flow occurs in one direction, which can lead to stagnation of sediment and floc breakage If the diameter of the impeller is increased to increase the agitation range, the power increases due to high-speed rota 	 The deeper the water, the longer the shaft and the larger the shaft diameter As the impeller is installed in the center of the water, it is necessary to maintain the flow speed at least 0.3m/sec to prevent sedimentation of debris
Selection	•	

4.4.2.6.2.3 Grit Transfer Facility

It is a transfer facility for easy final disposal of grits discharged from the screen and grit removal equipemnt, and odour prevention is considered. Representative models applicable to Sewage treatment plant were compared and reviewed.

Table 4-98 Comparison of Grit Transfer Facility

Category	Link Conveyor	Pneumatic Conveyor
Shape		
Composition	 Drive device Tension device Pipe & Fitting Link chain Sprocket Control panel 	 Body Air cylinder Air compressor Pipe & Fitting Air Receiver Tank Control panel
Transfer Distance	• 60m	• 80~100m
Advantage	 There is no odour and scattering dust because it is transported through a pipe. Possible to freely move 3-dimensionally by pipe Minimal installation area and unmanned transfer possible regardless of location Easy maintenance. 	 Because it is transported through a pipe, it is effective in preventing odour and scattering. Possible to freely move 3-dimensionally by pipe Possible to minimize installation area regardless of location Hygienic
Disadvantage	 Crusher equipment is required when transporting large impurities A lot of power required 	 Cannot be transported to high places as it is transported by air Less amount of transport due to intermittent transport instead of continuous transport Accessories are required (air compressor and air receiver tank) Hole damage caused by deposits in the bend
Selection	•	

4.4.2.6.3 Primary and Secondary Sedimentation Facilities

The facility is planned to improve the treatment efficiency by precipitating and removing the precipitable solids present in the sewage. A sludge collector is planned to collect and remove the precipitated sludge, a scum remover to remove scum generated on the top of the settling tank, and pumps to transport the sludge were planned.

4.4.2.6.3.1 Sludge Collector

As a model used as a sludge collector for Sewage treatment plant, there are chain flight type, underwater bogie type, and running beam siphon type in the case of rectangular water tanks. There is a peripheral driving type of a holding position.

Table 4-99 Comparison of Primary Sedimentation Tank Sludge Collector (Phase 2)

	mparison of Primary Sedimentation		
Category	Non-Metal Chain Flight Type	Underwater Bogie Type	Vacuum Suction Type
Shape			
Description	The flight fixed to the circulation chain running along the rail in the water continuously collects the sludge into the hopper part while rotating the weir.	 A bogie equipped with a scraper on a rail running in the water collects the sludge to the hopper part by reciprocating motion by the wire rope. 	 It moves along the guide rail underwater by compressed air, and the sludge is suctioned and discharged by vacuum.
Advantage	Process the largest amount Excellent collection ability as the collection speed is constant and continuous, Low-speed operation is possible Excellent wear resistance and corrosion resistance by using non-metallic materials	 As the sludge is discharged when the scraper reaches the hopper, it is possible to discharge high-concentration sludge and less discharge of unnecessary treated water. Possible to install inclined plate of settling tank Easy maintenance Operation by forward / reverse driving is possible 	Since the sludge is removed by the vacuum suction of the underwater sludge suction pipe, there is little concern about sludge injury Since sludge can be directly discharged to the outside, no sludge hopper or draw valve is required
Disadvantage	Restrictions on chain strength and channel width Difficulty in maintenance and inspection when chain is broken while driving in water The sedimented sludge is disturbed by the rotation and vibration of the flight plate Flights get in the way when cleaning the settling tank	 There is sagging of the rope due to tension, so intermittent adjustment is required Difficulty in handling a large amount of sludge 	Condensation in the air supply line Restrictions on suction pressure and suction amount Low-concentration sludge is sucked, resulting in a large amount of sludge Water flow obstruction due to floating air and sludge take-out pipes
Selection	•		

Table 4-100 Comparison of Secondary Sedimentation Tank Sludge Collector

Category	Peripheral Driven Type	Center Driven Suspension Type	Center Driven Support Type
Shape			
Description	 The central steel frame and beam are made integral and rotated by a driving device installed on the circumference of the jaw. The rake arm attached to the central steel frame rotates to scrape the sludge toward the center. 	A driving device is installed in the center of the support beam (combined with a check foot) installed along the diameter of the jaw, and a rake arm is hung on it to rotate, and the sludge is scraped to the center with a rake.	A pillar is installed in the center of the jaw, a driving device is installed on top, and a rake arm is attached to the central steel frame below it to rotate, so that the rake scrapes the sludge toward the center.
Jaw Diameter Usable Range	• 20 ~ 50m	• 4 ~ 12 m	• 10 ~ 25m
Advantage	Simple mechanical device Relatively less precision in equilibrium is required Less mechanical damage even if the precision of the floor finish is slightly lowered	 Advantageous for small-scale treatment plants Simple structure Excellent collection ability 	 Advantageous for medium-sized treatment plants Excellent collection ability The usable jaw diameter is the normal size The most commonly used model
Disadvantage	 The rotating device is complicated because the inspection plate rotates. Decreased collection ability (Possible blind spots) 	 Damage to the collector if the floor finish is not precise The equilibrium should be set correctly Can only be used with narrow diameter jaws 	 Large bearing device of driving part Damage to the collector if the finished floor is not precise The equilibrium should be set correctly
Selection	•		

4.4.2.6.3.2 Sludge Transfer Pump

The sludge pump of the sewage treatment facility should be free from foreign substances and should be planned as a device with long life, convenient maintenance, and high efficiency.

Models that are applied as sludge pumps for Sewage treatment plant include horizontal axis non-closed type screw centrifugal pumps, horizontal axis positive displacement twin pumps, and single axis spiral pumps (Progressive Cavity type). In general, Vortex pumps and Screw pumps were mainly used, and recently, screw pumps are being used a lot.

Table 4-101 Comparison of Sludge Transfer Pumps

Category	Horizontal Axis Non-Closed Spiral Centrifugal Pump	Positive Displacement Twin Pump	Single Screw Pump
Shape	Ç		
Description	The impeller consists of a spiral part and a centrifugal part and was developed to be suitable for sludge transfer by harmonizing the advantages of a centrifugal pump and a volumetric pump	Vacuum state is created and transported by the rotation of the piston inside the casing with constant volume on the suction and discharge sides	The cavity formed between the round stator and the rotor moves from the suction side to the discharge side as the rotor rotates, transporting the sludge
Advantage	 Less chance of foreign matter being wound around the impeller Excellent suction power, suitable for transporting large solids Higher efficiency than other types Equipped with advantages of both centrifugal and volumetric pumps Less performance deterioration due to concentration change 	 Excellent suction performance Discharge volume schedule Flow rate control by number of revolutions possible Can be used even with very high solids concentration Easy flow control Very little vibration 	 Easy to control discharge amount Very little vibration Easy to drive Suitable for small doses Transportation of high-viscosity solutions is possible Forward/reverse rotation can be repeated
Disadvantage	 Equipment cost is higher than other models Discharge volume control is disadvantageous compared to metering pumps 	Low efficiencyThere is a limit on the liftWide installation space	High maintenance cost Abrasion of the stator and rotor due to sand in the sludge is a concern
Selection	•		

4.4.2.6.4 Bioreactor Facility

As the core process of the sewage treatment process, it is a process that removes organic matter and nutrients, nitrogen, phosphorus, etc., and the main facilities, the aeration method and the blower facility, are planned. Aeration is a facility that requires a lot of power compared to other facilities in the treatment plant, and power requirements can vary greatly depending on the method.

4.4.2.6.4.1 Aeration Method

- Micro-bubbles of the front aeration method have superior oxygen transfer efficiency and mixing ability compared to surface aeration methods or submersible aeration methods. It should be planned in consideration of management and economic aspects.
- Compared to the front aeration method, the surface aeration method requires 10 to 30% of the air volume due to the larger bubble size, so construction and maintenance costs increase as the number of installation units increases.
- Mechanical aeration in water has high oxygen transfer efficiency, complete mixing is possible, and aerobic and anaerobic stirring operations are possible, but the equipment cost is rather high compared to other equipment.

Table 4-102 Comparison of Aeration Method Type

Category	Front Aeration Device (Diffusion Pipe + Blower)	Surface Aeration Method	Submersible Aerator + Blower
Shape	+		
Description	The body of the diffuser is made of polyurethane or membrane and is connected to the fan in the shape of a square or circular disc. Equipment is regularly arranged on the bottom of the tank and mixed by the rotating flow of unit bubbles generated in the diffuser.	 Blower (Ring Brewer) and high-speed agitator are installed to create air bubbles by forced suction of the blower by high-speed rotation of the agitator The diffuser is installed at the top of the tank, and the rotational flow in one direction is made in the tank for mixing, and oxygen is dissolved by mixing air and sewage in the tank 	Consists of an axial flow impeller and a fixed diffuser The low-speed turbine installed at the bottom of the aeration tank and the air pipe are connected to crush the injected air with mechanical agitation of the turbine to increase the surface area of the air and increase the oxygen transfer rate and agitation
Advantage	 Power cost is saved because oxygen solubility is high Easy to control the air volume according to the DO in the tank Possible to increase treatment efficiency in winter by preventing water temperature drop in the tank by the air injected from the blower High oxygen transfer efficiency Easy to cover when deodourizing 	Simple structure and easy installation The installation height of the diffuser can be freely adjusted Installation cost is cheaper and more advantageous than total abandonment Less breakdown and easy maintenance	 Aerobic and aerobic operation possible as aerobic and agitator can be mixed High oxygen transfer efficiency with excellent agitation Completely mixed Easy to install and maintain Glass in deep water
Disadvantage	 Oxygen supply capacity is limited, reducing treatment efficiency due to changes in water quality and flow rate When injecting air, dust should be removed through an air filter Regular maintenance is required due to the closing of the diffuser 	Poor oxygen transfer efficiency increases power cost	 High construction cost compared to other types Inconvenient maintenance as major facilities are underwater High power cost
Review The Amount of Air Required	 Oxygen transfer rate: 25~30% AOR: 40,308.5kg/d Required air volume: about 1,450m³/min 10% safety factor applied 	 Oxygen transfer rate: 20% AOR: 40,308.5kg/d Required air volume: about 1,810m³/min 10% safety factor applied 	 Oxygen transfer rate: 20% AOR: 40,308.5kg/d Required air volume: about 1,810m³/min 10% safety factor applied
Equipment Components	 Blower: 730m³/min × 7,000mmAq × 3 (1) units Diffusion tube: 600EA/paper × 4 sheets = 2,400EA Aeration rate = 500~800ℓ/min EA 	 Surface aeration equipment (forced blowing) 21 units/group × 4 units = 84 units Oxygen delivery per unit = 68kgO2/hr 	 Blower: 905m³/min × 7,000mmAq × 3 (1) units Underwater aerator: 17 units/G×4 = 68 units Aeration rate = 3,600ℓ/min unit
Construction Cost	• 100	• 136	• 109
Power Cost	• 100	• 160	• 186
Selection	•		

4.4.2.6.4.2 Diffuser

It is a facility that forms microbubbles from the air supplied from the blower and supplies them into the tank. Representative types used in sewage treatment plants include microbubble plate type, membrane disc type, and membrane rod type.

Table 4-103 Comparison of Diffuser Type

Category	Membrane Plate Diffuser	Membrane Disk Diffuser	Membrane Rod Diffuser
Shape			
Outline	 When air is supplied underwater using a membrane made of Poly Urethane, ultra-fine bubbles are created through pores formed in the plate-shaped membrane, and the body is made of STS316. 	When air is supplied underwater using a membrane made of EPDM, microbubbles are created through the pores formed in the membrane, and when the air supply is stopped, the pores are blocked to prevent backflow.	EPDM membrane is used to supply air from the water, and it is composed of rod-shaped pipe, saddle, wedge, and microporous membrane rubber membrane.
Oxygen Transfer Efficiency	• 20~30% (fresh water, 4~5M water depth)	• 15~20% (Clean water, 4~5M water depth)	• 15~20% (Clean water, 4~5M water depth)
Pressure Loss	• 800mmAq	• 300mmAq	• 400mmAq
Aeration Range	• 650ℓ/min	• 120ℓ/min	• 180ℓ/min
Exchanging Periods	• 10-15 years	• 5-7 years	• 5-7 years
Merits	 High oxygen delivery efficiency by generating ultra-fine bubbles of 1 mm or less. It is made of EPDM PU material and has a long lifespan. High oxygen delivery efficiency reduces the amount of air required and lowers the driving force of the blower. There is almost no decrease in oxygen delivery efficiency over time. The main body is made of STS316 material and has excellent durability. Simple piping configuration. 	 Good oxygen delivery efficiency due to the generation of fine bubbles of 2-3 mm Membrane material is flexible, so pores open and close, preventing back flow of sewage 	 Good oxygen delivery efficiency due to the generation of fine bubbles of 2-3 mm Membrane material is flexible, so pores open and close, preventing back flow of sewage
Demerits	 The pore size of the membrane is very small, so the discharge pressure is somewhat higher than that of other diffusers. 	 Membrane film is EPDM, and efficiency declines quickly due to hardening over time. Bubble concentration occurs at the top of the diffuser. 	 Membrane film is EPDM, and efficiency declines quickly due to hardening over time. Bubble concentration occurs at the top of the diffuser.
Selection	•		-

4.4.2.6.4.3 Blower Equipment

It is installed to supply the necessary oxygen to the bioreactor and operates 24 hours a day, so performance safety and ease of maintenance are important factors.

In general, models used in Sewage treatment plant are largely classified into turbo type and volume type, and in this plan, rotary roots blowers, multi-stage turbo blowers, and single-stage turbo blowers were compared and reviewed.

The blower should be connected with the DO system of the biological reactor to automatically control the air volume, energy-saving and easy-to-maintain models.

Table 4-104 Comparison of Blower Type

	Coor Poortor Player	Determi Deste Blance	Air Desvisor Blasser
Category	Gear Booster Blower	Rotary Roots Blower	Air Bearing Blower
Shape			
Structure	 One rotor is rotated at high speed to generate air volume and pressure that meet the specifications, and the number of revolutions is increased using a gearbox. 	Volume type blower that sucks and discharges air as much as the space (volume) between the impeller and the casing by rotating two impellers maintained at regular intervals (non-contact) in the cast iron casing in opposite directions	 One rotor is rotated at high speed to generate air volume and pressure that meet the specifications, and the number of revolutions is increased using an inverter.
Advantage	Variable discharge diffuser and helical gear reducer used to control the number of revolutions and air volume.	 When the intake air moves by a certain amount by the rotation of the impeller The air volume is proportional to the number of revolutions, and the pressure increases due to the resistance on the discharge side. Discharge flow rate is independent of pressure ratio when the number of revolutions is constant. 	 Uses a high-speed BLDC motor and air bearing to lift the rotating shaft and adjusts the number of revolutions and air volume using an inverter.
Disadvantage	Lubricating oil and cooling water are used for cooling	Noise and vibration Difficult to control wind volume	 Air-cooled separate fan for inverter cooling Inverter failure in case of odour and gas inflow
Driving Range	• 45~100%	 Consistent air volume can be supplied without any change in efficiency even when the discharge pressure changes 	• 70 to 100%
Maintenance	Since it rotates at high speed, vibration and noise are somewhat high, but it can be reduced below the noise standard by installing a silencer and soundproof cover	 Simple structure and fewer disassembly/assembly parts, making maintenance easy No separate lubrication device is required, and it is advantageous to use a general purpose (squirrel cage) motor 	 Since it rotates at high speed, vibration and noise are somewhat high, but it can be solved by applying a soundproof ventilation room
Selection	•		

4.4.2.6.5 Disinfection Facility

Disinfection Facility were planned to increase the hygienic safety of treated water by killing pathogenic bacteria that may survive in treated water.

Disinfection facilities include chlorine injection methods that inject disinfectants into discharged water in sewage treatment plants, ozone, and ultraviolet disinfection facilities.

Table 4-105 Comparison of Disinfection

Table 4-105 Comparison of Disinfection			
Category	Liquefied Chlorine (Cl ₂) Disinfection Facility	Ultraviolet (UV) Disinfection Facility	Ozone (O ₃) Disinfection Facility
Shape			
Structure	Chlorine gas is compressed under high pressure, cooled, liquefied, and stored, then evaporated to oxidize the chlorine.	Ultraviolet rays (UV) are irradiated with a UV lamp to destroy nucleic acid (DNA) in cells through contact with microorganisms and sterilize.	Compressed, cooled, and dried air is injected into the ozone generator and sterilized by mixing the ozonized air in the contact tank.
Advantage	Low installation cost Excellent disinfection effect with strong oxidizing power Excellent residual effect of disinfection prevents re-growth of microorganisms in sewers	 High virus sterilization effect Strong adaptability to flow and water quality fluctuations Short contact time No risk to human body and easy to install Requires low power 	 Processing biologically recalcitrant organic matter Sterilizes both bacteria and viruses Color can be removed Sterilization action without affecting turbidity
Disadvantage	Technology and experience in handling chlorine gas are required Leakage of liquid chlorine may cause severe corrosion of equipment and damage to surrounding areas. Unpleasant odour caused by chlorine disinfection	No residual effect after treatment If the water is turbid or the turbidity is high, the disinfection ability is affected.	Because it cannot be stored, it should be produced on site Initial investment and auxiliary facilities are expensive No residual effect after treatment High maintenance cost Subject to the High-Pressure Gas Safety Management Act
Selection	•		

4.4.2.6.6 Sludge thickening facility

The sludge generated in the water treatment process is thickened to improve the treatment efficiency of the digester and Dewatering facility.

Sewage treatment facility the type of enrichment facility following the introduction of the advanced treatment process should consider the site conditions of the sewage treatment facility, and since the amount of sludge generated and the Thickening method can vary greatly depending on each method, it is suitable for the advanced treatment method at the basic design stage of sludge. Enrichment facility It should be selected by reviewing the capacity and Thickening method.

Table 4-106 Comparison of Thickener

Table 4-106 C	able 4-106 Comparison of Thickener			
Category	Centrifugal Thickener	Belt Type Gravity Thickener	Multi-Disc External Cylinder Thickener	
Shape				
Structure	• The centrifugal force is used to thicken and separate the sludge, and the outer and inner cylinders are separated, so the sludge is transported at the speed of the screw.	 With a structure in which only the upper part of the belt-type thickener is removed, the sludge mixed with the coagulant is thickened by gravity while passing through the rotating filter cloth. 	With a structure in which only the upper part of the belt-type thickener is removed, the sludge mixed with the coagulant is thickened by gravity while passing through the rotating filter cloth.	
Advantage	Minimal components and compact, small installation area No separate odour control facility required Unmanned operation is possible	and activated sludge is possible, and operation and maintenance	 Low rotation, low vibration, low noise The number of screws can be adjusted, so there is no need to 	
Disadvantage	Generation of noise and vibration due to high-speed rotation Large power consumption Precisely manufactured, difficult to maintain	compressed air • A deodourizing cover is required for	• In case of large capacity, initial	
Selection	•			

4.4.2.6.7 Anaerobic Digestion

Organic solids contained in the sludge generated in the water treatment process are gasified or liquefied by anaerobic bacteria in the digester and decomposed into stable sludge, reducing weight and volume.

Digester tank agitation methods include recirculation by bio gas, mechanical mixing method, sludge recirculation method by pump, etc., and an appropriate agitation method should be selected in consideration of the characteristics of the digester and site conditions.

Table 4-107 Comparison of Digester Agitation

Category	Mechanical Agitation	Pump Agitation
Shape		Digester Agitator
Structure	Mechanical mixing method and can be mixed using an impeller, and constant mixing can be maintained	A method of mixing and stirring by moving gas and sludge with a pump to circulate the sludge
Advantage	Consistent mixing is possible Low construction cost Easy to maintain water level in digester to prevent scum from accumulating	Upper and lower circulation possible through pump Existing treatment plant can be easily remodelled by installing the digester outside
Disadvantage	Sludge short circuit occurs Tank should be emptied during repair Confidentiality of the driving device should be excellent	Power cost is relatively unfavourable compared to other methods
Selection	•	

There are direct heating and indirect heating methods for heating the digester, and the indirect heating method, which is advantageous when using the waste heat of the generator, was applied.

Table 4-108 Comparison of Digester Heating Method

Category	Indirect Heating Method	Direct Heating Method	
Shape	GAS Boiler GAS	Steam Boiler	
Structure	Heated and circulated the sludge using a heat exchanger	Injecting high-temperature steam directly into the digester	
Advantage	No concerns about sludge dilutionHigh temperature digestion is possibleHigh thermal efficiency	Low facility cost Easy to operate	
Disadvantage	High facility cost Pump facility added	Partial overheating may occur There is a risk of sludge dilution	
Selection	•		

4.4.2.6.7.1 Bio Gas Utilization Plan

The method of using extinguishing gas should be appropriately selected from among various methods in consideration of equipment costs, operating costs, and profitability.

Supplying bio gas to a generator to generate electricity to generate profits and heat the digestion tank using surplus waste heat is considered the most realistic and reasonable solution.

Most of the bio gas is composed of methane and carbon dioxide, and the use of this bio gas largely depends on whether or not carbon dioxide is separated. It is used as power generation or boiler fuel, and when carbon dioxide is separated, it is used as transportation fuel or city gas supply for automobiles and railroads.

Table 4-109 Comparison of Bio Gas Utilization Plan

able 4-109 Co	ble 4-109 Comparison of Bio Gas Utilization Plan				
Category	Power Generation / Hot Water Supply in Parallel	Electricity Generation	Hot Water Supply		
Outline	 Method of pre-processing bio gas (50% methane purity) and supplying it to boilers and gas engine generators seasonally to produce electricity or steam and supply it to consumers 	Method of pre-processing bio gas (methane purity 50%) to produce electricity from a gas engine generator and then supplying it to customers	 Method of pre-processing bio gas (methane purity 50%) and using it as boiler fuel A method of producing hot water in a boiler and supplying it to nearby places 		
Process	Bio gas Production and storage Pretreatment (Dehumidification, Desulfurization) Biomethane production	Bio gas Production and storage Pretreatment (Dehumidification, Desulfurization) Electricity production	Bio gas Production and storage Pretreatment (Dehumidification, Desulfurization) Steam production from boilers		
	(Power or hot water)	(Utilization within the treatment plant)	(Hot water supply)		
Features	 Energy recovery efficiency is average Increased installation cost (generator and boiler installation, insulated piping, etc.) Power generation in summer and boiler operation in winter to supply heat Easy to respond to the needs of energy consumers 	Reduction of facility installation cost Generator waste heat can be used as a heat source for digestion tanks and eco-friendly energy town greenhouses Limited heat source supply in winter Low energy recovery efficiency Low generator operating hours per year	Somewhat high energy recovery rate Increased installation cost (insulated double insulation pipe installation, etc.) Energy demand is low (1 location), and hot water consumption is variable, making it economically unfavourable Increase in plumbing work such as hot water supply piping and condensate recovery piping		
Selection	•				

4.4.2.6.8 Bio Gas Recovery and Storage Facility

Bio gas generated in an anaerobic digestion tank is mainly composed of methane (CH₄) and carbon dioxide (CO₂), and trace gas within 1%. This trace gas is composed of ammonia (NH₃) and hydrogen sulfide (H₂S), and also contains small amounts of other volatile substances. Among them, H2S is a subject to be removed because it acts as a cause of corrosion of gas piping pipes, gas meters, and other used devices.

4.4.2.6.8.1 Moisture Removal Facility

For stable operation of gas pretreatment facilities by dry desulfurization or activated carbon adsorption, it is effective to reduce and supply moisture in gas. In particular, in the high-temperature fermentation method, since the relative humidity in the gas is high, failures due to condensate in equipment or pipes occur, so moisture removal and drain measures are important.

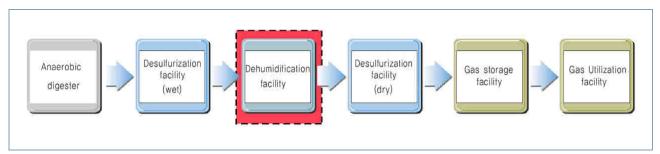


Figure 4-34 Moisture Removal Facility

Table 4-110 Moisture Removal Facility

Category	Cooling Dehumidification	Absorption Method	Compression Cooling
Principle	Water is removed by cooling the gas temperature by 1~5deg.C through a heat exchange	Moisture is absorbed and removed by an absorbent such as glycol, etc., and is regenerated by applying heat of about 200°C or more when regenerating the absorbent	A facility that removes moisture contained in digested gas by installing it at the end of the wet desulfurization facility during the process of using methane gasification by anaerobic digestion
characteristi c	 A large amount of moisture can be treated In the case of fire extinguishing gas, when used alone, it is suitable for cogeneration process It cannot be used as an independent process for the upgrade process 	High energy consumption Few application cases	Since the temperature rises, the effect is great when combined with cooling High power consumption Suitable for small-scale plant industry
Selection	•		

4.4.2.6.8.2 Types of Desulfurization Methods

Methods for removing hydrogen sulfide contained in bio gas can be largely divided into physical, chemical, and biological treatment methods, and in detail, can be divided into dry, wet, and biological treatment methods.

The desulfurization facility is installed to prevent corrosion of facilities such as boilers and generators caused by H2S during the combustion process of CH4 by removing H2S contained in flue gas in order to efficiently utilize CH4 gas generated from the sludge digester.

Table 4-111 Comparison of Desulfurization Method

Category	Dry Desulfurization	Bio Desulfurization	Wet Desulfurization
Shape			
Hydrogen sulfide treatment concentratio n	A method of cleaning a gas containing a large amount of hydrogen sulfide with an alkaline chemical and reacting with the chemical to remove the hydrogen sulfide component	A technology that removes sulfur from hydrogen sulfide in biogas using sulfur oxidizing microorganisms. It consists of a desulfurization reaction tank and other mechanical devices to simultaneously remove hydrogen sulfide and ammonia	A method of adsorbing / oxidizing hydrogen sulfide (H2S) by passing bio gas through a desulfurization tower filled with a desulfurization agent containing iron oxide (FeO3)
Hydrogen sulfide treatment concentratio n	• Less than 5ppm	• Less than 150ppm	• Less than 10~30ppm
Advantage	Excellent H2S removal efficiency Simple operation method and structure Low power consumption compared to wet type	 No need to replace or replenish filter media Driving cost is low 	 Excellent H2S removal efficiency Consistent high efficiency Inexpensive operation and maintenance costs Suitable for removing high-concentration H2S
Disadvantag e	In the case of high concentration inflow, the treatment efficiency is drastically lowered Condensation of the desulfurizer due to moisture (increase in pressure loss) Periodic replacement and replenishment of desulfurization agent is required Incurred waste treatment cost of the replaced desulfurization agent	 Keep the oxygen concentration of the inflowing gas above 1.5~2%. Insulation is required to maintain the temperature of the facility Add nutrients for microbes Excessive waste liquid generation 	Concerns about secondary contamination due to wastewater generation The reacted salt precipitates as a solid and settles out of the reactor High power consumption compared to dry type Periodic maintenance required
Selection	•		

4.4.2.6.8.3 Bio Gas Storage Tank

It is installed to temporarily store the bio gas that has passed through the desulfurization device and supply it to the boiler and gas generator at the sewage treatment plant, and the generated bio gas is scheduled to be stored for half a day.

Table 4-112 Comparison of Bio Gas Storage Facility

Category	Double Membrane Method	Resin Material Balloon Method Inside the Steel Tank
Shape		
Characteristic	 PVC coating on polyester fibers is used as a representative method of dry atmospheric gas storage Biogas is stored inside the inner membrane, and air is blown into the space between the outer membrane and the inner membrane with a pressurized fan to adjust the pressure of the bio gas in the inner membrane while maintaining the shape of the outer membrane in a hemispherical shape The outer membrane maintains a shape that is resistant to wind and snowfall, so the bio gas pressure can be maintained almost constant 	 As one of the dry atmospheric gas storage methods, it is a type in which plastic balloons such as polyethylene are stored in a steel tank Blowing air into the space around the built-in balloon and the steel tank using a pressurized fan to adjust the pressure of the fire extinguishing gas of the balloon almost constant Competitive price compared to Double Membrane
Selection	•	

4.4.2.6.8.4 Power generation and heat source supply facilities

Using bio gas, the main component of which is methane gas, as fuel to drive a generator and generate electricity. Generator waste heat is recovered and reused for heating the anaerobic digester. Waste heat from power generation recovered through the heat exchanger is reused for heating the anaerobic digester. A gas turbine method and a gas engine method are carefully reviewed to enable stable operation and are planned with many domestic applications.

Table 4-113 Characteristics of Bio Gas Power Generation

Category	Features		
Gas engine type	 Excess heat can be recovered from engine cooling water or exhaust gas A boiler should be installed to recover heat from the exhaust gas Generation efficiency 25-35%, total efficiency 55-75% including surplus heat consumption (when using city gas) The carbon gas in biogas is inert, so it won't cause engine problems The method of using the remaining heat is "Hot water only" or "Hot water + steam (approx. 8kg/cm2)" Low NOx operation by three-way catalyst method or lean burn method 		
Gas turbine type	 Generation efficiency 20-30%, total efficiency including surplus heat consumption 70-80% (when using city gas) As the exhaust gas temperature is high, the use of surplus heat is "steam (approx. 8~10 kg/cm2)" Because it is a rotary motion generator, vibration is virtually non-existent Generating capacity (city gas) is not economical unless it has a large capacity of 1,000 kW or more 		
Micro gas turbine type	 It is a compact turbine generator with a non-contact air bearing for the bearing of the high-speed rotating body, which makes it easy to manage and extends the life of the bearing Generation efficiency 15-30%, total efficiency including surplus heat use 60-80% (when using city gas) Using surplus heat can be either "hot water only" or "hot water + steam (about 7 to 8 kg/cm2)" Equipment cooling water facilities or lubrication facilities of the prime mover are unnecessary, and maintenance costs are low Because of lean combustion, low NOx operation is possible and exhaust gas treatment is unnecessary The turbine itself does not cause problems with hydrogen sulfide or ammonia 		

Table 4-114 Comparison of Bio Gas Power Generation Equipment

Category	Gas Engine	Gas Turbine	Micro Gas Turbine
Shape			
Generation efficiency	25 ~ 40 %	20 ~ 30 %	15 ~ 30 %
Output range	20 ~ 1,000 kW	500 ~ 100,000 kW	20 ~ 300 kW
Overall thermal efficiency	80 ~ 90 %	75 ~ 80 %	75 ~ 90 %
NOx generation amount	150 or less	100 or less	50 or less
Selection	•		

4.4.2.6.9 Sludge Dewatering Facility

Dewatering treatment is planned as a final treatment plant to dewater the sludge into a cake.

4.4.2.6.9.1 Equipment type review

Sludge dewatering equipment is a facility for further reducing the amount of digested sludge and facilitating final treatment, and representative models were compared and reviewed in consideration of their advantages.

Table 4-115 Comparison of Dewatering Facility

Category	Dewatering Facility (Centrifuge type)	Dewatering Facility (Filter press type)	Dewatering Facility (Belt type)
Shape			
Structure	 As the internal rotary cylinder of the main body rotates, the sludge is thickened and dewatered, and solid-liquid separated by centrifugal force with a gravitational acceleration of 2,000G or more. 	Bubble-type dewatering method, which uses an inlet pump through the hole in the middle of two Dewatering plates to introduce sludge into each Dewatering chamber and then pressurizes it to extrude and return water.	Add a polymer coagulant to the sludge to coagulate it, then supply the coagulated sludge between the filter cloths and dewater it with the compressive force of the roller.
Moisture content	• 80% or less	• 55-65%	• 80% or less
Coagulant injection rate	Polymer coagulant, about 1%, (per1kgDS)	• Ca (OH)2 25 to 40% • FeCl3 7-12%	• Polymer coagulant, 0.5~0.8% (per1kgDS)
Advantage	 Less components, less noise, and compact. Completely unmanned and automated operation possible in conjunction with sludge and chemical supply facilities 	The moisture content of the cake is low Excellent durability High chemical stability Low resistance coefficient Concentration of desorbed liquid is low Less required	Easy handling in case of failure
Disadvantag e	 Concerns about vibration and wear due to high-speed rotation Increased maintenance cost due to high electricity bill 	Low domestic driving record High initial investment cost High power cost Frequent clogging by coagulants	 Large space required for installation A large amount of filter cloth washing water is required. Spray phenomenon and large amount of odour due to washing the filter cloth
Selection	•		

4.4.2.6.10 Odour Control Facility

Odour control facility is planned as a process to remove hydrocarbon decomposition intermediates such as hydrogen sulfide (H₂S), ammonia, inorganic compounds, aldehydes, ketone oil, and other organic compounds generated in the treatment facility.

Odours of Sewage treatment plant include sediment and inflow pump facilities, and sludge treatment facilities. The outline is as follows, and the device differs somewhat depending on the closed state and the presence or absence of a cover.

The intensity of odour generation varies somewhat depending on the operating conditions and site, but the highest concentration of odour occurs in sludge treatment facilities, manure and septic tank treatment facilities.

Moderate odour emissions are expected from the pre-treatment plant.

Table 4-116 Odour source

Category	Pretreatment Facility	Water Treatment Facility	Sludge Treatment Facility
Odour source	 Grit Chamber Grit Remover Equipment Inlet Pumping Station Hopper, etc. 	 Various inflow and outflow channels Primary sedimentation tank Aeration Tank (if necessary) 	 Faecal Sludge Treatment Facility Sludge Retention Tank Sludge Thickening Facility Sludge Dewatering Facility

4.4.2.6.10.1 Odour control method

Odour control equipment should have a clear odour control effect, and be selected so that equipment and maintenance costs are low and secondary pollution does not occur.

Deodourizing air volume should be planned to minimize the spread of odourous gases by using a ventilation system and a separate system.

Table 4-117 Odour control method

1able 4-117 O	dour control method		
Category	Chemical Cleaning Method	Biofilter Method	Activated Carbon Adsorption Method
Shape			
Structure	Absorbs odour gas into chemical solution to chemically neutralize it, and removes odour gas by dissolving it in chemical solution.	The captured odour is used as a source of carbon and energy for microorganisms and is decomposed into water and carbon dioxide.	Adsorbs, decomposes, and removes odourous substances through physical adsorption and chemical reactions of activated carbon.
Odour removal target	 Acids: Alkaline gases such as ammonia and amines Alkali cleaning: hydrogen sulfide, mercaptan, acid gas, etc. Odour is not reduced by chemical reaction 	 Applicable to treatment of almost all odours and volatile organic compounds Effective for various odours from low concentration to high concentration, and excellent efficiency in removing complex 	According to the combination of adsorbents, odour can be selectively applied (deposition + neutral activated carbon)

Category	Chemical Cleaning Method	Biofilter Method	Activated Carbon Adsorption Method
Advantage & Dis- advantage	Can remove dust and dirt at the same time. Effective for odours of specific ingredients, but not suitable for complex odour removal. Need to treat discharged water after washing (secondary pollutants occur) Relatively many auxiliary facilities such as drug dilution storage tank	odours • Simple equipment, easy • maintenance • No secondary pollutants • Cheap equipment and maintenance costs • Uncontrollable operation is impossible because it is difficult to cultivate microorganisms. • Relatively high initial facility investment	Effective for low-concentration odours No water or chemicals are used, so there is no need for a separate drainage facility. Relatively low initial investment High maintenance cost due to long-term replacement of activated carbon Depending on the absorbent properties of activated carbon, it is vulnerable to high humidity environments
Selection	•		

4.4.2.6.11 Faecal Sludge Treatment Facility

4.4.2.6.11.1 Pre-treatment facility

The faecal sludge brought into the impurities treatment system removes coarse impurities from the rotary screen (6mm), sediment from the centrifugal separator, and fine impurities from the fine seed screen (2.5mm or less) to reduce the load of the subsequent process, prevent pipe blockage, and wear of facilities.

The removed impurities and sediment were planned to be transported to the hopper by a transfer conveyor, temporarily stored, and then taken out of the premises. In order to prevent the diffusion of high-concentration odours in the processing unit and storage tank, a closed room was installed to collect and deodourize. It was planned to install a diffuser in the storage tank to prevent sedimentation.

Table 4-118 Faecal pretreatment facility

Category	Comprehensive concomitant disposal machine	
Shape		Filtration of medium and large concomitant Filtration of micro concomitant Filtration of sand Auxiliary equipment such as hopper Remove with rotary screen Remove with fine seed screen Separation by centrifugal separator, dewatering

4.4.2.6.11.2 Thickening facility

The thickening facility consists of a centrifugal thickening, polymer melting device, sludge and polymer supply pump, and other auxiliary facilities. Two thickener, solids recovery rate of 90% or more, and sludge concentration of 3-5% were planned. In addition, an automated system for unmanned operation was established so that the thickener and the sludge supply pump could operate 1:1.

The sludge and chemical supply pump were applied as a variable propulsion cavity type metering pump that can adjust the supply amount according to the load variation of the thickener. In case of emergency, a reserve pump is used to operate the thickener, and a flowmeter is installed in the discharge pipe of the sludge and chemical supply pump to accurately measure and input the amount of sludge and chemicals to facilitate sludge thickening. The thickened sludge is transported to the mixed sludge storage tank by a transfer pump.

Table 4-119 Faecal Sludge thickening facility

Category	Centrifugal thickener	Transfer Pump	
Shape			
Characteristic	 It has few components and is compact, so the installation area is small No separate odour control facility is required Unmanned operation possible Noise and vibration due to high-speed rotation Power consumption is high 	 Easy to control the discharge amount Vibration is very low Easy operation Suitable for small capacity High-viscosity solutions can be transported Forward/reverse rotation can be repeated 	

4.4.3 Electrical Works

This plan aims that the treatment facilities could be operated stably and economically by an efficient installation and operation plan on electrical works such as power substations, electric supply system, instrumentation, IT (Information Technology) and firefighting facility, etc. Electrical and control work plan should consider the local conditions after the completion of the project. Major consideration for electrical and control work is as shown below table.

Table 4-120 Basic direction of Electrical and Instrumentation Control Facilities

Category	Description
Automation	 Introducing limited automation to ease the maintenance While it is operating the facility. Improving the efficiency of the facility operation by introducing the minimum field measurement facilities required for the operation. It plans to improve the level of automation facilities, depending on future facility upgrades.
Reliability	 Choosing an equipment reliable and easy to operate Selecting equipment safe from surrounding environments such as chemicals, caustic gases, dust and salt stress, etc. Considering appropriate explosion proof equipment located at places where fire or explosion is likely to occur.
Stability	 Planning the treatment process which is easy to be operated and repaired and is not worried about mal-operation. Protecting a shutdown of treatment process by preparing a standby equipment on major system. Prevention of fire and electric shock, etc.
Extensibility	 Select PLC system compatible for interface considering future integrated managements. Configure the system with ease software and hardware extension during enlargements or change of treatment process. Facility has functions to respond to informatization, etc. The international standard IEEE 802.3 Ethernet with ease interface is applied for the communication protocol.
Economic Efficiency	 Designing to minimize the operation expense by automated facilities. Energy saving by choosing equipment which is efficient and good for energy efficiency. Planning an economical system and reducing the personnel expenses.
Durability	 Choosing durable equipment. Selecting simple structural equipment which is prone not to be broken down. Choosing waterproof and dustproof equipment in case of outdoor installation.
Maintenance	 Planning to minimize instruction frequency. Selecting compatible equipment. Rational placement of equipment and securing an enough space.

4.4.3.1 Site Survey of Power Receiving System and Considerations

An on-site investigation was coordinated to check factors required in designing electrical and measure /control units. Based on survey results, a power supply plan within the substation bus was considered in this project.

Power supply of Bangladesh Fatehabad is supplied by connecting to the National Power Grid. National Power Grid Company is being operated by Power Corporation, PDB. As in Korea, small power demand is connected in a neighborhood distribution lines, large-scale demand for electricity has been supplied from the adjacent substation.

Figure 4-35 Status of the 33Kv substation

The sewage treatment plant consumes a large amount of power, and it was agreed that the power supply of the sewage treatment plant at the Fatehabad would be available on the 33kV primary line, as a result of a visit to PDB Substation, the Bangladesh Electric Power Corporation. Power supply in this review from the substation to the sewage treatment plant was commissioned in the PDB. Breakers and transformers in the sewage treatment plant are included in the electrical construction. In particular, the power supply at the Fatehabad sewage treatment plant, which requires the most power during this project, will be supplied from a substation about 1km (power inflow distance) away from the task site.

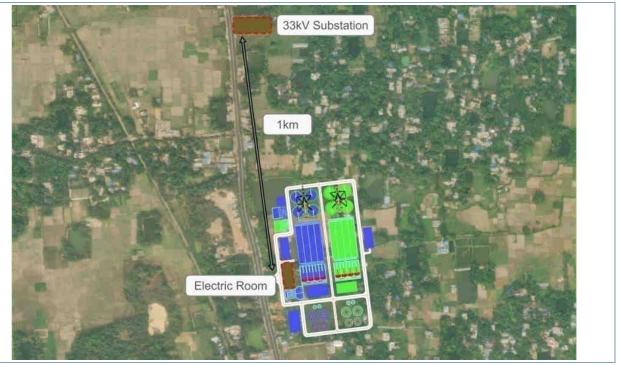


Figure 4-36 33Kv Substation Location

BPDB Work Scope will be as bewlo.

- Design, licensing and construction cost about electric power supply: 1 LOT
- Detailed work scope and costs will be negotiated during detailed design

4.4.3.2 Standard and Regulations

Standard and regulations to be applied in the process of designing and installation of electrical and measure/control devices are as shown below

- IEC: International Electro-technical Commission
- ANSI: American National Standards Institute
- IEEE: Institute of Electrical & Electronics Engineers
- ISA: Instrument Society of America
- ISO: International Organization for Standardization
- NEC: National Electrical Code
- NEMA: National Electrical Manufactures Association
- NFPA: National Fire Protection Association

4.4.3.3 Electrical Equipment

Selection of an electricity intake method suitable to a service voltage and its supply method in Bangladesh.

4.4.3.3.1 Facility Capacity

Table 4-121 Planning of Electrical Facilities

Category	STP1(Fatehabad)
Facility Capacity	Phase 1 (Q=60,000m³/day), Phase 2 (Q=90,000m³/day), Phase 3 (Q=120,000m³/day)
Power Connection	3Phase 33kV 50Hz 1Line + Generator
Voltage	3Phase 33kV 50Hz
Capacity	About 8,000kVA
Transformer Capacity	33kV/6600V 5,000kVA (Normal 1EA) 33kV/400-230V 1,500kVA (Normal 2EA)

Table 4-122 Expected Power Demand

Category	Capacity [kVA]
Pre-Treatment / Inlet Pumping Station Facility	689.52[kVA]
Biological Reactor Facility	246.9[kVA]
Secondary Sedimentation Tank Facility	108.87[kVA]
Disinfection Facility	27.64[kVA]
Blower Building Facility	2,253.86[kVA]
Faecal Sludge Treatment / Sludge Thickening Facility	504.03[kVA]
Dewatering Facility	134.38[kVA]
Odour Control Unit Facility	198.45[kVA]
Other Facility	65.65[kVA]
Total	4,229.3[kVA]

Table 4-123 Transformer Capacity

	STP (60,000m³/day)			
Category	Power Demand (kVA)	Voltage Drop (kVA)	Selection (kVA)	Voltage Drop (%)
Transformer Capacity 33kV/6600V	2,245.62[kVA]	4,222.15[kVA]	5,000[kVA]	10[%]
Transformer Capacity 33Kv/400-230V	1,081.17[kVA]	469.62[kVA]	1,500[kVA	10[%]
Transformer Capacity 33Kv/400-230V	902.51[kVA]	644.38[kVA]	1,500[kVA	10[%]

4.4.3.3.2 Power Connection System and Facility

The power supply will be connected one (1) line to national grid and additional one (1) line will be connected in emergency generator to ensure stable power supply. The power of high quality shall be ensured to prevent lowered treatment efficiency from long power-off and to improve reliability as a public facility.

Table 4-124 Review of Power Connection

Category	1 Line Income + Emergency generator	2 Line Income	2 Emergency generator
Configuration	JP 3W 33kV DS V VCB ATS	3P 3W 33kV 3P 3W 33kV (Normal) ALTS (Standby) DS VCB VCB VCB NO.1 TR (Normal) NO.2 TR (Normal) ACB ACB	Generator G DS VCB VCB VCB VCB Generator TR (Normal) Generator TR (Normal) ACB ACB ATS
Advantages	 Able to prepare for planned power-off by power company. Reduction of high voltage equipment. 	 Uninterrupted power incoming is possible for route and substation accidents. Equipment is simple and maintenance is easy. 	Stable power supply regardless of incoming power condition. Transformer not needed.
Disadvantage	Limited load operation. Generator room separate.	 Increased high voltage equipment (ALTS, etc) High costs of initial route construction. 	 Highest initial and operation cost. Requirement of skilled Maintenance staff.
Selection	•		
Reason for Selection	Choosing a system composed of 1 line connection and emergency power generator because 2 lines connection is impossible and power outage would occur frequently.		

Among mold and oil transformer, mold transformer is selected based on the comparison results summarized in Table. As described in the table, mold transformer is safe against explosion and allow small amount of electrical loss.

Table 4-125 Review of Transformer Type

Category	Mold Transformer	Oil Type Transformer
External form		
Inflammability /Explosiveness	Flame-retardant, self-extinguishing, Non explosive	Inflammable and has the risk of explosion
Noise Degree	Medium	• Low
Power Loss	• Low	Medium
Advantages	Excellent moisture resistance and stain resistance Installation area so small	Makes little noise Price is inexpensive
Disadvantages	The price is high	Installation area is large and is heavy
Selection	•	•
Reason for Selection	 The mold transformer was chosen because it is more efficient, quiet and easy to operate and maintain. The oil transformer was chosen because it is easy cooling effect and suitable for large capacity. 	

Digital distribution panel is selected according to the comparison results summarized in following table. Digital distribution panel is more accurate than conventional induction distribution panel because of digital protection relay. The installation of the selected distribution panel should be implemented in a way to minimize external influences such as vibration and physical impact

Table 4-126 Review of Distribution Board Type

Category	Digital Distribution Panel	Conventional Induction Type Distribution Panel
External form	9 9 9 9	
Outline	Centralized indication in front of distribution panel by unification of various measuring instrument, etc as digital method	Scattered arrangement of various measuring instruments, operation switches and induction type relays, etc at the front of distribution board
Advantage	Has excellent reliability using digital method Simplicity of operation and maintenance changing CT/PT ration	Familiar to existing users because there are many examples of its usage Low equipment cost
Disadvantages	The price is little high	Low accuracy of measurements Wiring is complicated and maintenance is inconvenient
Selection	•	
Reason for Selection • The digital distribution panel was selected since		it is strong on vibration and shock.

Vacuum circuit breaker is selected based on the comparison results summarized in Table VCB are relatively more stable and easier to repair in case of failure than other types of circuit breakers.

Table 4-127 Review of High Voltage Circuit Breaker

Category	Vacuum Circuit Breaker (VCB)	Oil Circuit Breaker (OCB)
Principle of interruption	Interruption from the expansion of electrons by intercepting the arc within sealed vacuum container	 At the under-oil interruption room, the oil gets decomposed with high temperature to create hydrogen and gas of good heat conduction, then cools and interrupts the arc
Rated Voltage	• 3.6kV~84kV	• 3.6kV~300kV
Breaking Current	• 8kA~40kA	• 8kA~50kA
Breaking Time	• 3Hz	• 5~8Hz
Breaking Ability	Excellent	The arc time is long at the low current band
Interruption Characteristics	Completely non triggeringHas risk of excessive voltageArc time is the shortest	Completely non triggeringNo risk of excessive voltageArc time is little long
Maintenance/ Inspection	• Simple	Treatment of oil is inconvenient
Selection	•	
Reason for Selection • The VCB was chosen because not only it is durable and easy to maintain but also it has been applied in many cases.		

Circuit breakers selected for this project are compared in Table. Different types of circuit breaker will be applied for different purposes depending on the magnitude of current. The criteria are set as 600A.

Table 4-128 Review of Low Voltage Circuit Breaker Models

Category	Air Circuit Breaker (ACB)	Mold Case Circuit Breaker (MCCB)
Frame Current	• 3Phases, 4Phases, 600AF~5,000AF	2Phases, 3Phases, 4Phases,30AF~1,200AF
Protection Functions	Over current, shouts circuit faults, ground faults	Over current, shout circuit faults
Applied Load	Suitable for large current	Suitable for low current
Installation Area	• Large	• Small
Economic Efficiency	• 400%	• 100%
Maintenance/ Inspection	Partial replacement of components during breakdown	Complete replacement during breakdown
Selection	•	•
Reason for Selection	 The ACB was chosen since it is durable and suitable to the short circuit protection and a case of more than 600A The MCCB was selected because it is easy to operate and suitable to a circuit less than 600A. 	

Table 4-129 Review of Emergency Generator

Category	Diesel Engine	Gas Engine
External form		not shall
Fuel	Diesel, Heavy oil	LNG, LPG, Bio gas etc.
Power Generation range	• About 20 – 15,000 KW	• About 20 – 3,000 KW
Maintenance Costs	Middle (Part supply and Easy to Repair)	Low (Part supply and Easy to Repair)
Start-up Time	Within 10seconds	Within 15seconds
Fuel ratio	• 345L/hr	• 515m3/hr
Cost	• Low	• Middle
Characteristic	 Initial investment cost is low Suitable to a sewage treatment plant which has a short operation time. It has been applied in many cases domestically. 	Stable supply of LNG No need to install a fuel storage facility No problem on air pollution It could be used for the cogeneration and peakcut in department stores, hospitals and various other buildings for self-supply of electricity
Selection	•	
Reason for Selection	The diesel engine was selected because it has been applied in many cases and it is easy to supply a fuel and it is economical on its initial investment.	

4.4.3.3.3 Stand by Power Supply System

The stand-by direct current (DC) power supply system is to be installed to supply power to high and low voltage distribution panels in case of emergency. The type of rectifier to be used at the plant is 3-Phase full wave rectifier. The output voltage and current need to be monitored and controlled at the central control room. The capacity of sealed lead-acid battery is determined to meet the criteria for supplying power for minimum 30 minutes.

4.4.3.3.4 Power Monitoring and Control System

It is planned to manage the power effectively with remote monitoring and control of power system and to improve reliability with alarm printer output and data management during trouble of power system.

Table 4-130 Overview of Power Monitoring and Control

Category	Description	
Purpose	 Establishment of effective power monitoring and control system Reduction of manpower by the operation of power Installation's remote monitoring and control Efficient operation of substation facilities through constant monitoring of load power 	
Monitoring Function	 Status indication of equipment (Run, Stop) Indication of equipment's faults and break down Measurements (Voltage, current, power, power factor, frequency and watt-hour, etc) 	
Control Function	Operation of equipment: run, stop	
Protection Function	Over current, shout circuit faults, ground fault, low voltage	

It is planned to install the condenser separately at the starting circuit of motor (90% the improved power factor) and install transformer no-load compensation condenser.

4.4.3.3.5 Power Control Unit

The rated voltage of motor is selected by considering the purpose of usage and loading characteristics to minimize voltage drop in the route and guarantee smooth starting of the motor. It is also selected by considering simplicity of producing the instrument, maintenance, stability and economic efficiency.

Table 4-131 Rated Voltage of Motor

Motor Capacity	Selection	Remark
Below 0.4kW	AC Single Phase 230V	-
Below 0.4kW ~ 150kW	AC three Phase 400V	-
Above 150kW	AC three Phase 400V or high voltage	-

Table 4-132 Starting Method Selection

Starting Methods	Motor Classification	Remark
Full Voltage (Line Starting)	Low voltage motors below 15kW	-
Υ-Δ	Low voltage motors below 15kW~150kW	-
Soft Starting (VVCF)	Motors with frequent startup among low voltage motors of 15kW~150kW	-
Inverter (VVVF)	Equipment that needs change of speed according to the process	-
Reactor	High voltage motors above 150kW	-

Table 4-133 Main Materials Specification of MCC

Appearances	Туре	Item	Description
400	Metal Clad Circuit Breaker (MCCB)	Rated Voltage	AC 400V
		NO. of Poles	3 or 4
Gr. Gr. 63		Trip Method	Thermal trip
	Protective Relay	Туре	Digital electronic type (Integrated type of control section and indication section)
young !		Protection Function	Over current, open-Phase, negative-Phase, ground fault and unbalance protection, etc.
100		Communication Method	RS-484(Modbus)
		Control Method	ON/OFF
	Inverter	Rated Input	3Phase 400V 50Hz
		Control Method	Variable voltage variable frequency (VVVF)
1		Control Power Supply	AC 230V

4.4.3.3.5.1 Local Operating Panel (LOP)

A local operating panel (LOP) is installed near the instrument to monitor and operate the instrument on-site. LED lamps indicating the status of the instrument such as on, off, and fault, on/off switch will be located on the front. The LOPs, which are to be installed outdoor, are to be encapsulated within a box as shown in the figure in Table.

Table 4-134 Main Materials Specification of Local Operating Panel (LOP)

Appearance	Item	Description
	Туре	2 Door, pipe support type, wall mounted
्र व <u>व</u> हरू	External Case Material	Stainless (STS 304)
20000 100000 10000000000000000000000000	Switch	Operation method selection switch (local/remote), on/off switch (start/stop)
	Indication LED lamp	Start, stop, fault

4.4.3.3.6 Indoor Electric Facilities

4.4.3.3.6.1 Lighting and Receptacle Facilities

It is used energy saving materials in lamps, stabilizers and lamp instruments applied to STP and planned energy saving by using lamp instruments and control method.

Table 4-135 Lighting and Receptacle Facilities

Category	Item	Description
Lamp	LED lamp	LED lamp
Lighting	Reflector	High illumination reflector
Lamp Control	Circuit Structure	Forms separate circuit for lighting equipment near window (Lights can turn off in daylight)
Method	Outdoor Lighting	Automatic on/off control by automatic switch of streetlight

- Panel board: Select entire panel as STS in case of exposed type and select front section as STS for the sealed type
- Main Circuit Breaker: Use metal clad circuit breaker (MCCB)
- Feeder Circuit Breaker: Ensure reserve breaker of 20 % or greater using earth leakage breaker (ELB).

4.4.3.3.6.2 Firefighting Facility

The automatic fire detection facilities are planned by applying international NEPA CODE standards.

Table 4-136 Information and Communication Facilities

Category	Main Points of the Design	Main Reflected Contents of the Design
Telephone Facility	Built integrated wiring system to prepare for information age of future	Integrated wiring system configuration for future high-speed information and communication services (Telephone, FAX, PC communication), etc.
Broadcasting Facility	Installed P.A System within building	 Composed of exclusive broadcasting in which delivery of notifications, background music (BGM) for break time and transmission of emergency broadcasting is possible Formed linked circuit with fire reception panel so that the emergency broadcasting can have priority in transmission during fire
TV Public Viewing Facility	Installed antenna to receive regular programs	Installed antenna for TV reception and antenna for satellite broadcast reception at the roof of management section

4.4.3.3.6.3 Lightening Protection System

The lightening protection method is planned by selecting appropriate lightening protection method for IEC 62305 regulations and the lightening protection method comparison table is as follows.

Table 4-137 Lightening Protection System

Category	Lightning Rod Method	Ion Discharge Method
Principle for protection • Faraday principle		Discharge principle of receding streamer
Characteristic	Small sized equipment, simple installation Continuous maintenance is necessary because it hits on lightning	 Large sized equipment. Installation and repair are inconvenient Reduction of lightening protection from the expansion of protection range
Selection	•	

Category	Lightning Rod Method	lon Discharge Method
Reason for Selection	The lightning rod method was selected becaus and maintenance is easy.	e its initial investment is cheap and its installation

It is planned that the reliability of grounding system is improved (maintaining total grounding resistance of 5Ω) by applying common grounding and structure grounding systems.

It is planned the method that secures stability, having excellent construction and economic efficiency as well as being appropriate for IEC regulation based on equipotent structure. The grounding method comparison is as follows.

Table 4-138 Grounding System

Category	Common Grounding	Individual Grounding	
Grounding Method	The method of commonly connecting various subjects to one system	The method of individual grounding for various grounding subjects	
Characteristics	 Prevents creating polar difference between each equipment Discharges abnormal current of equipotent structure to the earth at the same time Equipment is damaged when exceeds system limitation 	Creates potential difference during inflow of abnormal current Needs adequate spacing and complete insulation Not restricted to grounding site	
Additional Applications • Install the earth resistance low considering equipment characteristics, etc • Parallel grounding of structure • Install potential difference settlement device for equipotent structure Selection		Inappropriate for IEC (common grounding) regulation	
Reason for Selection	The common grounding was chosen because it is suitable to recent standards and it is good for safety and stability.		

4.4.4 Instrumentation Works

4.4.4.1 Monitoring and Control Facility

The monitoring and control method should apply the central monitoring and decentralized control method for effective monitoring at the central control room. The PLC system with excellent compatibility and maintenance efficiency should be selected for the monitoring and control facility and fiber optic cable should be applied to secure data processing speed and reliability of data in case of the data transmission facility.

Monitoring and Control Facility: 1Lot

CCTV Facility: 1LotInstrument Facility: 1Lot

4.4.4.2 Monitoring and Control Facility Configuration of Monitoring and Control Facility

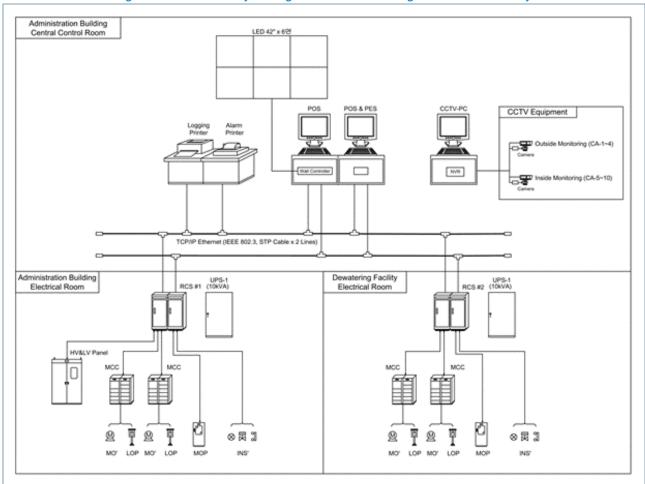


Figure 4-37 Configuration of Monitoring and Control Facility

4.4.4.3 Arrangement of Central Control Room

The LFD is installed by considering operation conditions for the selection of central monitoring panel and the parabolic louver lighting lamp is selected for prevention of blinding the operator's vision for the selection of lighting equipment. Also, the UPS is installed separately to each equipment section to secure reliability through abnormal operation.

Table 4-139 Functions of Each Monitoring and Control Facility

Category	Items	Description
	Operator	 Securing centralized monitoring, decentralized control and simplicity of controls Automatic and manual operation of facility Structured to make restarts easy during recovery from emergency situations Prompt handling at abnormal state of process and facility
	Data Gathering	 Automatic storage of operation data and promptness of data search Reasonable data interpretation and analysis Records facility failure time and run time
Monitoring and Control (POS & PES)	Maintenance	 Established duplication of main facility and backup system Maximization of device compatibility through installation of PLC system Screen editing, program editing and Report editing, etc.
	Alarm Printer	Records failure message of the device that has created the event Records contents of event and occurred time
	Logging Printer	 Records daily, weekly, monthly and yearly reports Records instant value, average value, max value, min value, addition value, calculation value and others
Data Printing Devices	Color Hard Copier	Prints plant screen and trend screen, etc.

Table 4-140 Monitoring and Control Facility Functions

Category	Items	Description
Operation And	Process Status Monitoring	 Group, Trend, Overview, Graphic Display Monitors operation status of process and equipment Monitors status of receiving substation and distribution system and System Network
Monitoring Functions	Alarm/Event Monitor Logging	Process alarm and monitoring of equipment failure Event and operation manipulation monitoring Process data, analogue measurements and highest or lowest value monitoring
Control	Loop Control	PID, Feed Back Control Ratio Control, Cascade Control, Program Control
Functions	Sequence Control	Arithmetic Logic Control, Time Chart Control, Interface Control
Data Record And	Data Preservation and search	Historical Data collection, Trend, store and search function Historical Database store function
Preservation Function	Logging & Report	 Prints daily, monthly and yearly reports Prints operation history of facility Prints alarm record and operation data
Operation Management	System Failure Diagnosis	Indicates system device operation status and failure alert
Management Function	Emergency alarm function	The function of notifying operator automatically through SMS during abnormalities of systems with high importance

The system compatibility and future integrated management system have been considered and it has been planned by selecting the PLC system with excellent maintenance efficiency.

Table 4-141 Review of Monitoring and Control Facility

Category	PC+PLC	DCS
Structure Outline	System is developed for factory automation Manipulation is performed with MMI software Input and output are performed with PLC hardware	System is developed for process controls Manipulation and I/O are configured with DCS exclusive software and hardware
Duplication	Stable implementation of CPU, power and communication is possible	Stable implementation of CPU, power and communication is possible
Extensibility	Easy extension with open type structure	System extension is complicated with closed structure
Control Function	Interlock control function is very excellent Successive control function is weak but settled with PID module	Interlock function is excellent Loop control and calculation control functions are excellent
Maintenance	Prompt maintenance is possible	Delayed delivery time of main parts
Credibility	Interlock control function is excellent	Process control function is excellent
Selection	•	
Reason for Selection	The PC & PLC system was selected since it is go system.	ood for operation and maintenance as an open

Select and plan windows operating system with interface familiar to user, open and of easy maintenance. The operating system comparison table is as follows.

Table 4-142 Review of Operator System

Category	Windows	Unix
System Integration	High (Uses common hardware, has wide range of selections)	Low (Operates only in certain hardware for each vendor)
Program Management	Good (The program which is same as the one for tasks can be used)	Bad (Almost impossible to use common programs)
Convenience	Because the interface is same for general offices, even beginners can handle easily	Because user interface is different from the one for general offices, it is difficult to use and need high technological ability
Characteristics	Very economical compared to Unix hardware Continuous upgrade with low cost is possible because the hardware development speed is very quick	H/W platform is expensive, but performance is very high Hardware upgrade is limited to specific vendors and hardware development speed is very slow
Selection	•	
Reason for Selection	The windows operation system was selected bec good for expandability.	ause its operation and installation are easy and

Table 4-143 Review of Monitoring and Control Method

Category	Central Monitoring, Decentralized Control Method	Central Monitoring, Centralized Control Method		
Composition Drawing	ALKEN LOCKING HARD PRINTER CUPER RECORDENT DATA HIGHWAY RCS RCS RCS RCS RCS RCS RCS RCS RCS RC	PES PER LEGISMO MARD MARD MARD MARD MARD MARD MARD MARD		
Outline	Monitors information of each facility by centralizing them at one center and place control devices by scattering them near the facility	Monitors information of each facility by centralizing them at one center and centralized placement of control device to 1 center		
Controllability	Performs monitoring & control function of each process by installing local control facility by processes	Performs monitoring & control function of all facility at the main control facility at the integrated management room		
Extensibility	Partial facility increase is easy	The overall facility being shut down is unavoidable during extensions		
Construction Efficiency	Easy construction with centralized placement of control cable	Complicated construction with centralization of control cable to 1 center		
Selection	•	•		
Reason for Selection	The central monitoring and decentralized control r minimization of the operators, operation convenie			

It is planned it by selecting the LFD method with comparatively low demand power, excellence in the maintenance aspect and no vibrations.

Table 4-144 Review of Central Monitoring Panel Type

Category	Large Format Display	DLP Projector	Beam Projector
Appearance			
Image Expression Method	Displaying an image by a light incident on pixels after gathering the light penetrating liquid crystal	Reflection ray control method by Digital Micro-mirror Device (DMD)	Displaying an image on a flat light by a structural arrangement of liquid crystal element penetrating a liquid panel.
Application Environment	Able to control for 24 hours a day	Able to control for 24 hours a day	Able to control for less than 8 hours a day only
Advantage	Its initial investment cost is relatively cheap.	Most stable in case of continuous operation	Its initial investment cost is cheap.
Disadvantage	When it breaks down its whole panel should be replaced.	Its initial investment and O&M cost are high.	Its stability would be decreased in case of using it continuously.
Selection	•		
Reason for Selection	The LFD was selected since its stably for 24 hours a day.	initial investment cost is low and it is	s able to control and operate

It is planned to maximize the readability with image monitoring using high resolution and low illumination camera while selecting lamp attachment type for cameras installed outdoors for effective monitoring at nighttime. Also, the monitoring vulnerable areas are minimized by installation of remote-controlled rotation type cameras and planned to be protected from thunder by installing thunder arrester at the power and signal line of outdoor cameras.

Table 4-145 CCTV Facility

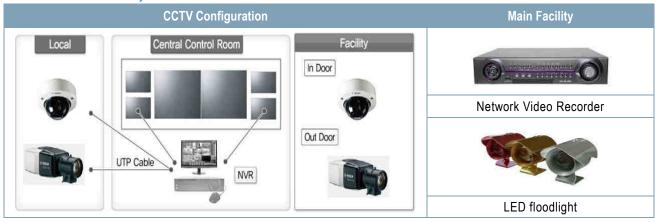


Table 4-146 Specifications of CCTV Components

Category	Materials Specification	Qty.	Appearances
Camera	 Minimum illumination: Above 0.002Lux Outdoor: LED Floodlight Camera Pole or Bracket	10Set	
Network Video Recorder	CPU: Above I5 3.0GHzMemory: Above 4.0GBHard Disk: Above 1TBChannel: Above 16CH	1Set	O state different
Monitor	Type: Above Color LED 23Inch Resolution: Above 1,280 x 1,024	1Set	
Data way	Optical cable: Single Mode, Outdoor UTP cable: Above Cat. 5e, 4Cores	1Lot	

4.4.4.4 Measuring Instruments

Table 4-147 Selection Contents of Measuring Instruments

Category	Selection Criteria	Applied Measuring Instrument
Durability	Selecting waterproof and dust proof structure Selecting material of STS 304 or better for brackets	All Instruments
Corrosion Resistance	Selecting material of STS 316 or better for water contacting section	Electrode, Diaphragm
Maintenance	Selecting auto cleanser attached type for water quality meter	Water quality meter
Lightening Protection	Installation of the SPD to protect instruments from lighting damage	All Instruments

Table 4-148 List of Measuring Instruments

Category	Item	Туре	Qy.	Rema rk
Pre-Treatment /	Grit Chamber Inflow Level meter	Ultrasonic Type	2 2 1 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1	
Inlet Pumping	Grit Chamber Outflow Level meter	Ultrasonic Type	2	
Station Facility	Primary Sedimentation Tank Inflow Flow meter	Ultrasonic Type, 1300A	1	
	Biological Reactor DO Analyzer	Optical Type	4	
Biological Reactor Facility	Biological Reactor MLSS Analyzer	Infrared Transmitted light Type	4	
	Biological Reactor Air Flow Meter	Thermal Mass Type, 350A	4	
	Return Sludge Flow Meter	Electronic Type, 350A	4	
Secondary	Return Sludge Density Analyzer	Infrared Type, 350A	4	
Sedimentation Tank	Surplus Sludge Flow Meter	Electronic Type, 250A	1	
Facility	Surplus Sludge Density Analyzer	Infrared Type, 250A	1	
	Drain PIT Level Switch	Quick Float type	ic Type	
	Disinfection Tank Level Meter	Ultrasonic Type	1	
	Caustic Soda Inflow Flow meter	Electronic Type, 250A	1	
	Discharge Water Flow meter	Ultrasonic Type, 700A	1	
	Discharge Water COD Analyzer	Potassium Permanganate Method	1	
Disinfection Facility	Discharge Water SS Analyzer	Infrared Scattered light Method	1	
	Discharge Water PH Analyzer	Glass Electrode Type	1	
	Discharge Water TP Analyzer	Absorbance Method	1	
	Discharge Water TN Analyzer	Absorbance Method	1	
	Drain PIT Level Switch	Quick Float type	2	
Blower Building Facility	Biological Reactor Air Flow Meter	Thermal Mass Type, 500A	2	
•	Faecal Sludge Tank Level Meter	Ultrasonic Type	1	
	Supernatant Liquid Tank Level Meter	Ultrasonic Type	1	
	Thickened Sludge Tank Level Meter	Ultrasonic Type	1	
Faecal Sludge	Polymer Feed Density Analyzer	Infrared Type, 350A 4 Dow Meter Electronic Type, 250A 1 Dow Meter Electronic Type, 250A 1 Switch Quick Float type 2 Evel Meter Ultrasonic Type, 250A 1 Dow meter Electronic Type, 250A 1 Dow meter Ultrasonic Type, 250A 1 Dow meter Ultrasonic Type, 700A 1 Dow Malyzer Potassium Permanganate Method 1 Dow Analyzer Glass Electrode Type 1 Downalyzer Absorbance Method 1 Downaly		
Treatment	Polymer Feed Flow meter	Electronic Type, 250A	1	
	Centrifuge Inflow Density Analyzer	Infrared Type, 250A	1	
	Centrifuge Inflow Flow meter	Electronic Type, 250A	1	
Facility Faecal Sludge	Thickened #1 Flow meter	Electronic Type, 65A	1	
	Thickened Inflow Flow meter	Electronic Type, 150A	4	
	Thickened Inflow Density Analyzer	Infrared Type, 150A	4	
	Dewatering Centrifuge Flow meter	Electronic Type, 150A	2	
	Dewatering Centrifuge Inflow Density Analyzer	Infrared Type, 150A	2	
	Sludge Balancing Tank Level Meter	Ultrasonic Type	1	
Sludge Thickening	Sludge Balancing Tank Density Analyzer	· · · · · · · · · · · · · · · · · · ·	1	
Facility	Mixed Sludge Flow meter	**	4	
	Mixed Sludge Density	Infrared Type, 150A	4	
	Thickened Sludge Tank Level Meter	Ultrasonic Type	_	
	Sludge Tank Flow meter	Electronic Type, 150A		
	Thickened #2 Flow meter	Electronic Type, 150A	2	
	Digestion Sludge Flow meter	Electronic Type, 150A	2	
Dewatering Facility	Digestion Sludge Density Analyzer	Infrared Type, 150A	2 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1	

4.5 Capacity Building

This feasibility study planned to strengthen the capacity of the agency through commissioning and training, technology transfer, and operational support after completion for the sustainability of Sewage Service in the project target area.

4.5.1 Commissioning & Training

CWASA has no experience in operating sewage treatment plants. Commissioning & Training should be carried out because the lack of professional manpower can cause problems in facility operation management and reduce the effectiveness of the project. In this F/S, the commissioning and training plans are proposed as follows, and detailed plans for smooth facility operation of the recipient country should be established in the implementation stage.

4.5.1.1 Training

Training plan including safety management training, technical training and water quality analysis training is proposed as below and training will be conducted by the above-mentioned professional operators mobilized for commissioning.

Table 4-149 Training Plan

Cate	gory	Target	Description				
General		Operator	Risk of water quality accidents Emergency management measures Importance of environmental pollution prevention Responsibility Building cooperative relationship with local residents				
Saf Manag	•	Operator Maintenance & Repair Staff	 Seasonal safety training Education on accident response (suspension of water supply, power outage, flood, hazardous substance, fire) 				
Theory		Operator / Maintenance & Repair Staff	 Facility management Operational response in emergency Guidelines for the operation of the STP in emergency Pump operation tips in emergency Principle of biological treatment process and operational skill Sludge treatment technology 				
Technical Skills	Practice	Operator / Maintenance & Repair Staff	 Determination of capacity and specification of equipment Cautions on operation Cause of and countermeasures to trouble Equipment and instrument control 				
	On-site	Operator Maintenance & Repair Staff	On-site operation Inspection methods and analysis				
Commis	sioning	Operator / Maintenance & Repair Staff	Operation of unit equipment, no-load operation, pre-operation, operation Inspection on sewage treatment, sludge treatment facilities				
Pipe Management		Pipe Management Staff	 Technical understanding of sanitary sewer General maintenance of sanitary sewer Operation and maintenance of sanitary sewer 				
Water Quality Survey		Water Analyst	Laboratory management Management of laboratory equipment Management of test result				
Adminis	stration	Administrative Staff	Management of STPGeneral education on administration of sanitation				

4.5.1.2 Commissioning

Commissioning is the final stage of construction to check whether the facility is operating normally and to solve problems that are identified as well as preventing future problems. In addition, it aims to derive optimal operation factors through the verification of the treatment efficiency, thereby realizing the original objectives of the operating public sewerage system.

Commissioning consists of pre-inspection, no-load operation test and load operation test, and the details are as shown below:

- · Load operation test on civil, mechanical and electrical facilities
- Analysis of water quality of influent and between treatment processes
- Analysis treatment efficiency of each unit process
- Inspection of mechanical, electrical and instrumentation equipment, and monitoring operational condition
- Education of operators and transferring technical skills on operation and maintenance
- Preparation of commissioning report

4.5.1.3 Manpower and Required Mobilization Plan

It is recommended that the Contractor mobilize professional human resources for commissioning consisting of pre-inspection, no-load operation and load operation test of facilities, and educate operational workers to transfer technical skills for operation and maintenance. The mobilization plan for the commissioning is shown in Table as below.

Table 4-150 Mobilization Plan for Commissioning & Training

	For	eign	Local		
Position	No. Staff Input (M/M)		No.	Staff Input (M/M)	Total
Commissioning Manager	1	6			6
Deputy Manager			1	6	6
Process Engineer	1	6	1	6	12
Mechanical Engineer	1	3	1	6	9
Electrical & Instrumentation Engineers	1	3	1	6	9
Total	4	18	4	24	42

42 M/M (18 M/M for foreign engineers, 24 M/M for local engineers) is planned for commissioning. The input manpower consists of a commissioning manager, deputy manager, process engineer, engineer by field.

Table 4-151 Commissioning Manpower Input Plan - Foreign

Category		Staff Input					Numb	Staff	
		1	2	3	4	5	6	er	Input (M/M)
Commissioning Manager	Field	1	1	1	1	1	1	1	6
Process Engineer	Field	1	1	1	1	1	1	1	6
Mechanical Engineer	Field		1		1		1	1	3
Electrical & Instrumentation Engineer	Field		1		1		1	1	3
Total									18

Table 4-152 Commissioning Manpower Input Plan - Local

Category			Numb	Staff					
		1	2	3	4	5	6	er	Input (M/M)
Deputy Manager	Field	1	1	1	1	1	1	1	6
Process Engineer	Field	1	1	1	1	1	1	1	6
Mechanical Engineer	Field	1	1	1	1	1	1	1	6
Electrical & Instrumentation Engineer	Field	1	1	1	1	1	1	1	6
Total									24

4.5.1.4 Technology Transfer

Technology transfer of skills and knowhow of commissioning and O&M is necessary for local O&M staffs to be technically independent in order to enable the efficient O&M of facilities. For this reason, both theoretical training and practical training are proposed to achieve the goal of the technology transfer plan. The technical transfer plans are explained in Table below.

Table 4-153 Technology Transfer Plan

Catego	ory	Description						
Sewage Treatment Process	Engineers	Process Calculation Hydraulic calculation						
Construction	Engineers	Installation of equipment and cautions Construction skills on main structures						
Operation of Control System	Operators and Instrument Controller	Control and operation skills on sewage treatment process and sludge treatment process Operation skill in different case of emergency						
Operation & Management	Commissioning Engineers and Operators	Learning on O&M manual of treatment process Analysis of no-load and load tests Interconnection operation between existing and new STPs as per variation of flow and quality The time and methods of safety diagnosis						

4.5.2 **O&M Support after Construction Completion**

As per the EDCF evaluation manual (20.12, KEXIM), Ex-post evaluation will be conducted after two years from the project completion to evaluate the effectiveness, impact, and sustainability of the project to obtain lessons and suggestions for future EDCF project support.

In the previous EDCF sewerage project, there was insufficient O&M support after construction completion. Even though commissioning & training was implemented during the project, the PEA had several O&M problems due to the lack of technical specialties and lack of financial resources.

In this project, to achieve the long-term effect of the project in accordance with the EDCF framework, O&M support for training and technology transfer for two years after construction completion is proposed as follows.

Table 4-154 O&M Support after Construction Completion

- Constitution Con	•	reign	Lo	Local				
Position	No.	Staff Input (M/M)	No.	Staff Input (M/M)	Total			
O&M Manager (Process Engineer)	1	24			24			
Deputy Manager			1	24	24			
Process Engineer			1	24	24			
Mechanical Engineer	1	24	1	24	48			
Electrical & Instrumentation Engineers	1	24	1	24	48			
Total	4	72	4	96	168			

168 M/M (72 M/M for foreign engineers, 96 M/M for local engineers) is planned for O&M support plan after construction completion. The input manpower consists of a O&M manager, deputy manager, process engineer, engineer by field.

Table 4-155 O&M Manpower Input Plan - Foreign

		Staff Input												Numb	Staff
Category		2	4	6	8	10	12	14	16	18	20	22	24	er	Input (M/M)
O&M Manager (Process Engineer)	Field	2	2	2	2	2	2	2	2	2	2	2	2	1	24
Mechanical Engineer	Field	2	2	2	2	2	2	2	2	2	2	2	2	1	24
Electrical & Instrumentation Engineer	Field	2	2	2	2	2	2	2	2	2	2	2	2	1	24
Total															72

Table 4-156 O&M Manpower Input Plan - Foreign

Category		Staff Input												Numb	Staff
		2	4	6	8	10	12	14	16	18	20	22	24	er	Input (M/M)
Deputy Manager	Field	2	2	2	2	2	2	2	2	2	2	2	2	1	24
Process Engineer	Field	2	2	2	2	2	2	2	2	2	2	2	2	1	24
Mechanical Engineer	Field	2	2	2	2	2	2	2	2	2	2	2	2	1	24
Electrical & Instrumentation Engineer	Field	2	2	2	2	2	2	2	2	2	2	2	2	1	24
Total															96

Table 4-157 Technology Transfer Plan

Table 4-197 Technology	Transist Flair							
Catego	ory	Description						
O&M Manager	Director of O&M support	Director of O&M support Facility O&M support and training of local technicians						
Deputy Manager	Executive Director of O&M support	Executive Director of O&M support Facility O&M support and training of local technicians						
Process Engineer	Process of O&M support	Director of Facility O&M support Preparation and training of treatment process maintenance manual Training on operation plans for each situation in case of emergency in the water treatment process						
Mechanical Engineer	Mechanical O&M support manager	 Training on equipment installation technology and precautions Training on an equipment maintenance plan Training on operation plan for each situation in case of emergency in the water treatment process 						
Electrical & Instrumentation Engineers	Electrical & Instrumentation O&M support manager	Training on water treatment control panel operation technology Training on Emergency (power outage, etc.) operation plan for each situation						

4.6 Consulting Service

4.6.1 Necessity of the Consultant

Since this project is supported by EDCF and subject to binding aid conditions, project management as an aid project different from general financial projects is required.

In addition, the project includes sewerage system thorough project management in association with the consulting service is essential.

For this reason, a foreign consultant, who is well aware of EDCF procedure, is required to carry out activities such as project preparation, detailed design, bidding support, construction supervision and commissioning.

4.6.2 Scope of Works of the Consultant

The services of consultants shall be utilized in the carrying out 2of the Project, particularly with regard to the detailed de2sign, preparation and evaluation of bidding documents assisting the PEA and project supervision. The Consultant shall carry out the necessary activities as described below but not necessarily limited to the following:

4.6.2.1 Detailed Design

- Data Collection
- Topographic survey, geotechnical investigation, water quality survey and household survey
- Detailed Design for sewerage system
- Cost estimates and establishment of construction implementation plan
- Environmental & Social Impact assessment
- Other technical assistance to the Client in regard to the Project

4.6.2.2 Bidding Support

- Preparation of bidding documents
- Assistance in bid evaluation
- Assistance in preparation of contract documents
- Assistance in contract negotiation

4.6.2.3 Supervision of Works

- Supervision on safety, quality, and construction management
- Inspection and approval for quality management
- Training and commissioning
- Project management

4.6.2.4 Others

- Preparation of the of Project Progress Reports & Schedule Management
- Other PEA support services
- Preparation of the Project Completion Report

4.6.3 Procedures for Selection of Consultants

4.6.3.1 General

KEXIM normally requires the PEA to adopt the following procedures in the selection and employment of consultants:

- Preparation of the Terms of Reference and cost estimates
- Preparation of a Short List of Consultants
- Invitation to submit proposals
- Evaluation of proposals
- Negotiation of a contract

4.6.3.2 Terms of Reference

The Terms of Reference are the initial statement to the consultant of the work that is required to and, with eventual modifications, form an integral part of the contract which governs the work that the consultant is to perform. Normally, the Terms of Reference should contain the following:

- a precise statement of the objectives of the assignment
- the scope and timing of the required services
- the inputs to be provided by the PEA
- particulars of the output (i.e., reports, drawings, etc.) required by the consultant

4.6.3.3 Short List of Consultants

The selection of a consultant for a particular assignment usually begins with the preparation of a Short List of Consultants to be invited to submit proposals. Such a Short List shall normally consist of not less than three and not more than five consultants. Should the PEA find it difficult to compile a satisfactory Short List of qualified consultants from the information available to it from its own past experience and other sources, the KEXIM shall, at the request of the PEA, make available information on consultants, from which the PEA may draw up its own Short List.

4.6.3.4 Invitation for Proposals

After the completion of a Short List of Consultants, the Letter of Invitation shall be sent to the "short-listed" consultants to submit their proposals. The Letter of Invitation shall include the Terms of Reference and any other supplementary information (which may include estimated man-months) concerning the proposed work and the conditions under which the work is to be performed.

The Letter of Invitation shall clearly indicate that financial terms are not to be included in the proposals at this stage, that the selection shall be made on the basis of qualifications to perform the work, and that financial terms shall be discussed and agreed only at the time of contract negotiations with the selected consultant.

The Letter of Invitation shall also stipulate the details of the selection procedure to be followed, including the technical evaluation categories and an indication of the weight to be given to each.

PEA shall use the applicable Standard Request for Proposals under the EDCF Loan (Standard RFP) of the latest version issued by the Bank with minimum changes, acceptable to the Bank, as necessary to address project- specific conditions.

4.6.3.5 Evaluation of Proposals

Proposals received by PEA in response to the invitation shall be evaluated in accordance with the criteria stipulated in the Letter of Invitation. Such criteria shall normally include:

- The consultant's general experience and performance record in the field covered by the Terms of Reference
- The adequacy of the proposed approach, methodology and work plan
- The experience and records of the staff members to be assigned to the work.

The relative importance of the above-mentioned three factors will vary with the type of consulting services to be performed, but in the overall rating of the proposals most weight shall normally be given either to the qualifications of the staff members to be assigned to the Project or to the approach and methodology, rather than to the reputation or fame of the consultant.

The qualifications of the staff members to be assigned to the Project should be evaluated on the basis of the following three criteria:

- General qualifications (education, length of experience, types of position held, duration of service with the consultant, etc.)
- Suitability for the Project (experience in performing the duties which will be assigned to them in the Project)
- Familiarity with the language and the conditions of the country in which the work is to be performed, or experience in similar environments.

In its evaluation of the proposals, PEA shall use numerical ratings and prepare an evaluation report. Such evaluation report should normally give detailed information on the organization responsible for the evaluation, selection criteria and relative weight distribution.

4.6.3.6 Contract Negotiation

After the evaluation of the proposals has been completed, PEA shall invite the first-ranked consultant to enter on negotiations on the conditions (including costs and financial terms) of a contract between them.

If the two parties are unable to reach agreement on a contract within a reasonable time, PEA shall terminate the negotiations with the first-ranked consultant and invite the consultant who ranked second in the evaluation to enter on negotiations. This procedure will be followed until PEA reaches agreement with a consultant.

4.6.4 Required Mobilization Plan

Consultant mobilization plan is classified into Phases and the assigned engineers should be selected considering the suitability of works by the area of expertise.

4.6.4.1 Detailed Design & Bidding Support (Phase 1)

In this F/S, it is planned that 371 M/M (foreign staff 191 M/M, local staff 180 M/M) of professional staff will be mobilized for 16 months of detailed design and bidding support.

The Consultant's team will be composed of a project manager, deputy team leader and the following key staff; sewage process engineer, sanitary sewer engineer, structural engineer, geotechnical engineer, mechanical engineer, electrical & instrumentation engineer, architect/landscape specialist, social specialist, environmental specialist, procurement specialist, quantity surveyor.

Table 4-158 Mobilization Plan for Detailed Design and Bidding Support-Foreign Staff

	D :4:		1	2	3		_	C	7	Staff			44	40	40	4.4	4.5	4.0	Ne	Staff
No.	Position				3	4	5 Dot	6 tailec	/ I Dos	8 ian	9	10	11	12	13	14	15	16	No.	Inpu ^e (M/M
	l						Del	lanec	i Des	igii					Bla	ding	Sup	port		
1	Project Manager	Home				4	4	4	4			4	4	4	4	4	4	4	1	-
		Field	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		16
2	Sewage Process Engineer (1)	Home Field	1	1	1	1	1	1	1	1	1	1	1	1					1	12
		Home	1	1	1	ı	ı	ı	1	1	1	I	I	ı						6
3	Sewage Process Engineer (2)	Field	'	'	'	1	1	1	'	'	'	1	1	1					1	6
	Sewage Process	Home	1	1	1	1	1	1	1	1	1	1	1	1						12
4	Engineer (3)	Field																	1	-
_	Sanitary Sewer	Home																	4	-
5	Engineer (1)	Field	1	1	1	1	1	1	1	1	1	1	1	1					1	12
6	Sanitary Sewer	Home	1	1	1				1	1	1								1	6
0	Engineer (2)	Field				1	1	1				1	1	1					ı	6
7	Sanitary Sewer	Home				1	1	1				1	1	1					1	6
•	Engineer (3)	Field	1	1	1				1	1	1								•	6
8	Structural	Home				1	1	1			1	1							1	5
	Engineer (1)	Field							1	1			1	1					·	4
9	Structural	Home				1	1	1	1	1	1	1	1	1					1	9
	Engineer (2)	Field				4	4	4			4	4								-
10	Geotechnical Engineer (1)	Home		1	1	1	1	1	1	1	1	1	1	1					1	5
		Field Home		1	1				1	1			1	1						6
11	Geotechnical Engineer (2)	Field		1	1	1	1	1	1	1	1	1	ı	1					1	5
	Mechanical	Home				'	'	1	1	1	1	1								4
12	Engineer (1)	Field				1	1	'	'	'	'	1	1	1					1	5
	Mechanical	Home				1	1	1	1	1	1	1	1	1						9
13	Engineer (2)	Field					·												1	
	Electrical & Inst.	Home						1	1	1	1									4
14	Engineer (1)	Field				1	1					1	1	1					1	5
15	Electrical & Inst.	Home				1	1	1	1	1	1	1	1	1					4	9
15	Engineer (2)	Field																	1	-
16	Social	Home							1	1	1								1	3
טו	Specialist	Field										1	1	1					I	3
17	Environmental	Home							1	1	1								1	3
17	Specialist	Field										1	1	1					1	3
18	Procurement	Home									1	1	1						1	3
	Specialist	Field												1	1	1	1	1		5
19	Quantity Surveyor	Home						1	1	1									1	3
_		Field									1	1	1	1						4
							_												Home	93
							To	otal											Field	98
																			Total	191

Table 4-159 Mobilization Plan for Detailed Design and Bidding Support-Local Staff

Staff Input Sta										Staff										
No.	Position		1	2	3	4	5 Det	6 tailed	7 I Des	8 sign	9	10	11	12	13 Bid	14 ding	15 Sup	16 port	No.	Input (M/M)
1	Deputy Team Leader	Field	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	16
2	Sewage Process Engineer	Field	1	1	1	1	1	1	1	1	1	1	1	1					2	24
3	Sanitary Sewer Engineer	Field	1	1	1	1	1	1	1	1	1	1	1	1					3	36
4	Structural Engineer	Field				1	1	1	1	1	1	1	1	1					1	9
5	Geotechnical Engineer	Field				1	1	1	1	1	1	1	1	1					2	18
6	Mechanical Engineer	Field				1	1	1	1	1	1	1	1	1					2	18
7	Electrical & Inst. Engineer	Field				1	1	1	1	1	1	1	1	1					2	18
8	Architect/Land. Specialist	Field							1	1	1	1	1	1					1	6
9	Social Specialist	Field				1	1	1	1	1	1	1	1	1					1	9
10	Environmental Specialist	Field				1	1	1	1	1	1	1	1	1					1	9
11	Procurement Specialist	Field												1	1	1	1	1	1	5
12	Quantity Surveyor	Field							1	1	1	1	1	1					2	12
							To	otal											Field	180
	Total 18									180										

4.6.4.2 Construction Supervision (Phase 2)

In this F/S, it is planned that 624 M/M (foreign staff 306 M/M, local staff 318 M/M) of professional staff will be mobilized for 48 months of construction supervision, and the Consultant's team will be composed of a project manager, deputy team leader and the following key staff; sewage process engineer, sanitary sewer engineer, structural engineer, geotechnical engineer, mechanical engineer, electrical & instrumentation engineer, architect/landscape specialist, quantity surveyor.

Table 4-160 Mobilization Plan for Construction Supervision – Foreign Staff

										Staff	Inpu	t								Staff
No.	Position		3	6	9	12	15	18 Cor	21 nstru	24 ction	27 Sup	30 ervis	33 sion	36	39	42	45	48	No.	Input (M/M)
1	Project Manager	Home																	1	-
'	Project Manager	Field	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	ı	48
2	Sewage Process	Home																	1	-
4	Engineer (1)	Field	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	ı	48
3	Sewage Process	Home																	1	-
J	Engineer (2)	Field	3		3		3		3		3		3		3		3		ı	24
4	Sanitary Sewer	Home																	1	-
4	Engineer (1)	Field	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	I	48
5	Sanitary Sewer	Home																	1	-
5	Engineer (2)	Field	3		3		3		3		3		3		3		3		ı	24
6	Structural Engineer	Home																	1	-
0	Structural Engineer	Field	2		2		2		2		2		2		2		2		ı	16
7	Geotechnical	Home																	1	-
'	Engineer	Field			3	3	3	3	3	3	3	3	3	3	3	3	3	3	ı	42
8	Mechanical	Home																	1	-
0	Engineer	Field					2		2		2		2		3	3	3	3		20

Staff Input											Staff									
No.	Position		3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	No.	Input
								Cor	nstru	ction	Sup	ervi	sion							(M/M)
9	Electrical & Inst.	Home																	1	-
9	Engineer	Field					2		2		2		2		3	3	3	3	I	20
10	Architect/Land.	Home																	1	-
10	Specialist	Field									2		2		3	3	3	3	I	16
																			Home	-
							To	otal											Field	306
																			Total	306

Table 4-161 Mobilization Plan for Construction Supervision – Local Staff

Staff Input Staff																				
No.	Position		3	6	9	12	15	18 Cor	21	24	27	30 pervis	33 sion	36	39	42	45	48	No.	Input (M/M)
1	Deputy Team Leader	Field	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	48
2	Sewage Process Engineer	Field	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	48
3	Sanitary Sewer Engineer	Field	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	48
4	Structural Engineer	Field		3		3		3		3		3		3		3		3	1	24
5	Geotechnical Engineer	Field	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	48
6	Mechanical Engineer	Field				2	2	2	2	2	2	2	2	2	2	2	2	2	1	26
7	Electrical & Inst. Engineer	Field				2	2	2	2	2	2	2	2	2	2	2	2	2	1	26
8	Architect/Land. Specialist	Field				2	2	2	2	2	2	2	2	2	2	2	2	2	1	26
9	Quantity Surveyor	Field													3	3	3	3	2	24
							To	tal											Field Total	318 318

4.6.4.3 Overall Mobilization Plan

In this F/S, total 995 M/M (foreign staff 497 M/M, local staff 498 M/M) of professional staff will be mobilized during 64month for the project implementation period (16 months for detailed design & bidding support, 48 months for construction supervision). In the detailed design and bidding support stage, it is planned to input 371 M/M (foreign staff 191 M/M, local staff 180 M/M). In the construction supervision stage, it is planned to input 624 M/M (foreign engineer 306 M/M, local staff 318 M/M).

Table 4-162 Overall Mobilization Plan

Dhara	0-4		Input (M/M)	
Phase	Category	Home	Field	Total
D (" D : 0	Foreign Staff	93	98	191
Detailed Design & Bidding Support	Local Staff	-	180	180
bidding Support	Sub-Total	93	278	371
:	Foreign Staff	-	306	306
Construction Supervision	Local Staff	-	318	318
Ouper vision	Sub-Total	-	624	624
	Foreign Staff	93	404	497
Total	Local Staff	-	498	498
	Total	93	902	995

4.7 Contractor Selection

4.7.1 Selection Method

The selection of contractors for EDCF loan projects is carried out through the recipient country procurement system under the responsibility of the Bangladesh government. In principle, a competitive bidding method is applied based on economic feasibility, efficiency, and fairness. The recipient country assumes all responsibilities for projects ordered by the recipient country, and the EDCF checks whether the entire process is properly implemented according to the procedures set forth in the loan agreement.

4.7.1.1 Contract Method

Contract methods for selecting a contractor include Design-Bid-Build Contract and Design-Build Contract. This project is designed and constructed in consultation with the implementation agency and EDCF, and sufficient review of sewage treatment process, facilities, materials and constructability for each unit process is possible. Therefore, it was agreed to adopt the Design-Bid-Build Contract method, which is expected to produce high-quality results.

Table 4-163 Contract Method

Category	Description
Design-Bid-Build Contract	 After selecting a consultant from the ordering organization and carrying out the design, the construction is separated and the order is placed. A method of having a consultant prepare a design document, bidding based on it, and selecting a contractor to construct the construction object. Procedures such as ordering, project implementation, and follow-up management are somewhat complicated and the project period is long. It is economical because it can reflect the uniqueness of the ordering organization, and is advantageous in solving existing problems. In general, it is difficult to apply new technologies because a lot of proven technologies are applied. When a problem occurs, it is possible to respond quickly because the ordering organization directs and consults with the service company. It is possible to check mutually between design and construction.
Design-Build Contract	 The contractor provides all services of design and construction to the ordering organization, and the ordering agency concludes a contract to perform design and construction with a single contractor. As the construction is carried out under one main contract, the limits of responsibility for the overall construction become clear. Since the overall contractor is responsible for design and construction, it is possible to guarantee design and construction. It is difficult to check and adjust by the ordering organization, so you may not know about design or construction problems that can greatly affect construction cost or process. The final result may not satisfy expectations due to minimal involvement of the ordering organization.

4.7.1.2 Bidding Method

Bidding methods for selecting a contractor include Single Stage One Envelope Bidding Procedure, Single Two Envelope Bidding Procedure, Two Stage Two Envelope Bidding Procedure, and Two Stage Bidding Procedure. The bidding method for this project is finalized through EDCF approval after the consultant selects it in consultation with the implementing agency and the recipient country procurement agency at the stage of detailed design and bidding support.

Table 4-164 Bidding Method

Category	Description
Single Stage, One Envelope Bidding Procedure	 In the single proposal method, bidders participate in bidding by enclosing a price proposal and a technical proposal in one envelope. Bidding documents are disclosed on the date and time posted in the bidding notice, and the implementing agency evaluates and undergoes the EDCF approval process for the evaluation results. In general, the participant who offered the lowest price is selected.
Single Stage, Two Envelope Bidding Procedure	 A method of submitting the technical proposal and pricing proposal simultaneously in separate envelopes. Under the same method, the implementing body first opens and evaluates the technical proposal, and then evaluates the pricing proposal separately. This is to evaluate the proposals by focusing on the technical capabilities of the proposers without being influenced by the price. The bidder cannot change the technical specifications while the evaluation is being conducted. When the evaluation of the implementing body and the EDCF approval are completed, the price proposals of companies that have passed the technical proposals are released. Among these companies, companies that offer competitive prices are selected as contractors.
Two Stage, Two Envelope Bidding Procedure	 A method of submitting the technical proposal and pricing proposal simultaneously in separate envelopes. The implementing body first opens and evaluates the technical proposal, and then evaluates the pricing proposal separately. At this time, unlike the Single Stage method, bidding companies are given an opportunity to change the technical standards according to the conditions of the implementing agency. This is to give all bidders a chance to meet the technical standards required by the implementing agency, and once the 1st technology evaluation is completed, the participating companies submit the 2nd bidding documents. Based on the final submitted technology and price proposal, a competitive company is selected as a contractor.
Two Stage Bidding Procedure	 In the two-step method, only the technical proposal is submitted first, and then the price is reviewed. When a bidder submits a technical proposal, it is disclosed on the bidding date, and consultations are conducted with ADB and implementing organizations based on the bidding details. At this time, the bidders are notified of the defects or deficiencies found, and can change them. This is to give all bidders a chance to meet the technical standards required by the implementing agency. After the 1st technology evaluation is completed, the participating companies submit the 2nd bidding documents. Price changes are also possible according to changes in technical specifications, and sufficient preparation period is given before the submission of the secondary bidding documents. Based on the final submitted technology and price proposal, the participant with the highest score is selected as the contractor.

4.7.2 Contractor Selection Process

4.7.2.1 Bidding

General bidding documents include bidding guidelines and guidance, bid forms and appendices, (secret) agreements, bid guarantee forms, performance guarantee forms, advance payment guarantee forms, general contract conditions, special contract conditions, matters to be added to and modified from general contract conditions, specifications, quantity statement, bidding drawing, bidding submission form, supplementary information, and bidding document supplementation/modification.

The owner holds a pre-tender meeting and arranges a site survey to explain the site conditions, and all answers to questions received from bidders and minutes of the site briefing meeting (MOM, Minutes of Meeting) are gathered and distributed.

The bidder will pay the total construction cost, including material costs, equipment costs, labor costs, subcontracting costs, overhead costs, other expenses and profits required to complete the construction in accordance with the specifications and contract documents, at a competitive price through the application of feasible construction methods, etc. A price proposal, which is a series of work to derive, should be prepared and submitted within the bidding deadline.

4.7.2.2 Contract

After the bid evaluation, the final successful bidder is selected and the contract is concluded, and the contractor should prepare for the start of construction within the deadline when a letter of award or letter of intent is issued from the owner. When signing a contract, Performance Security and Advance Payment Guarantee should be submitted.

4.7.3 Contractor Work Scope

The main tasks that the contractor will be responsible for in this project are as follows, and the scope of the contractor's work will be confirmed after the execution of the detailed design.

4.7.3.1 Construction of Sewerage System and Defect Liability

- Sewage Treatment Plant, Q=60,000m3/d (Daily Average)
- Faecal Sludge Treatment Plant, Q=100m3/d
- Sanitary Sewer, D200~1,600mm, L=58.3km
- Household Connection, 10,000Nos.
- Operation & Maintenance Vehicles
- Defect Liability

4.7.3.2 Commissioning and Training

- Commissioning
- Training

4.7.3.3 Operation Support after Construction Completion

Operational support after construction completion of sewerage system (2 years)

4.8 Operation and Maintenance

4.8.1 General

Sewerage are facilities that aim to prevent water pollution by treating sewage and wastewater discharged from human life and discharging it to the discharge area. However, since direct recovery from investment and installation is impossible and the effect does not appear in a short period of time, maintenance of Sewage treatment plant aims to comply with effluent water quality standards. In addition, the sewerage project requires a considerably long period of time and a large amount of investment from establishment of the plan to start of use. Therefore, the preservation of water quality and the improvement of the sanitary environment of residents can be achieved when operation and maintenance are appropriate after the start of use.

- Plan for sewer, sewage treatment plant, and faecal sludge treatment facilities to be suitable for each purpose and to fully demonstrate their functions organically.
- Establishment of a sewage facility integrated maintenance management system establishment plan.
- Establishment of directions for efficient operation and maintenance of sewerage facilities and basic policies for sewerage informatization.

Table 4-165 Operation & Maintenance (O&M)

Category	Description
Main Issues	 Economical operation with safety and efficiency Maintaining and improving performance Establishing working system Safety and sanitation Economical management on facility operation Operation considering energy saving
Labor Saving	Adoption of centralized monitoring and distributed control method Facility automation
Operation & Maintenance	Conduct daily inspection, intermediate inspection and regular repair Establishment of emergency measures Recording and analysis of performance of various equipment Establishment of operational plan through periodic analysis of wastewater Overload prevention Securing and maintain spare parts for repair works Preparation and analysis of daily report
Energy Saving	Establishment of operational plan as per operational or load variation Facility automation
Working System & Safety	 Securing qualified or appropriate staffs Establishment of command system Securing stability of equipment and safety of working environment Regular training for capacity building Compliance with regulations
Cooperative Relationship with Residents	 Respect and listen to residents Building up trust through public disclosure of information Settlement of resident-friendly facilities through facility tours

4.8.2 O&M Cost Estimate

4.8.2.1 Total O&M Cost

O&M cost of the sewerage system in this project is composed of electricity cost, chemical cost, labor cost, consumables & repair cost, replacement cost and administrative cost. Total O&M cost for 40 years is estimated at US\$ 210,756 thousands and Annual O&M cost is estimated at US\$ 5,269 thousands as below.

Table 4-166 O&M Cost Estimate (US\$)

Category	Annual	Total (40 years)
Electricity cost	2,201,741	88,069,640
Chemical cost	782,560	31,302,400
Labor cost	293,646	11,745,840
Consumables & Repair Cost	228,401	9,136,040
Replacement Cost (15year)	1,658,150	66,326,000
Administrative Cost	104,409	4,176,360
Total	5,268,907	210,756,280

Note) Administrative Cost is assumed as 20% of sum of Labor Cost and Consumables & Repair Cost

4.8.2.2 Electricity Cost

Electricity cost was calculated as follows by calculating the amount of electricity required for the operation of the sewage treatment plants, such as inlet pumping station, bioreactor, secondary sedimentation tank, and sludge treatment facility.

Table 4-167 Electricity Cost

Catagony	Consumption	Unit Cost	Co	ost
Category	(kWh/Day)	(US\$/kWh)	(US\$/Day)	(US\$/year)
Fatehabad STP	63,200	0.09545	6,032	2,201,741

4.8.2.3 Chemical Cost

Chemical costs for the operation of sewage treatment plants and sludge treatment facilities is calculated as follows.

Table 4-168 Chemical Cost

Category	Consumption	Unit Cost		Cost
Category	(kg/Day)	(US\$/kg)	(US\$/Day)	(US\$/year)
Polymer (Sludge concentrate, 0.4%)	104.80	6.97	730	266,450
Polymer (Dewatering, 0.8%)	74.00	6.97	516	188,340
Polymer (Faecal sludge concentrate, 0.4%)	4.80	6.97	33	12,045
Chlorine Gas	224.80	0.27	61	22,265
NaOH (STP odour control)	694.00	0.70	486	177,390
NaOCI (STP odour control)	34.00	0.28	10	3,650
NaOH (Faecal Sludge odour control)	347.00	0.70	243	88,695
NaOCI (Faecal Sludge odour control)	17.00	0.28	5	1,825
H ₂ SO ₄ (Faecal Sludge odour control)	94.00	0.64	60	21,900
Total			2,144	782,560

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

4.8.2.4 Labor Cost

Labor costs is calculated as follows considering the local conditions and the need for professional manpower for the facility.

Table 4-169 Estimated Labor Cost

Category	Number of Staff	Unit Cost (US\$/month)	Cost (US\$/year)
Superintending Engr.	1	1,127	13,529
Executive Engr.	5	1,106	66,362
Assistant Engr.	7	840	70,575
Sub-Assistant Engr.	7	612	51,395
PA-cum-Computer Operator	5	391	23,448
Driver	6	421	30,315
Security	5	317	19,011
Office Helper	5	317	19,011
Total	41		293,646

4.8.2.5 Consumables & Repair Cost

Consumables & repair cost is calculated by applying the rate according to the operating period to the construction cost for each field, considering the facility conditions, durability period, and replacement frequency for civil/structural, mechanical, electrical and instrumentation works.

Table 4-170 Consumables & Repair Cost

Category		Construction Cost (US\$)	Repair Rate (%)	Cost (US\$/year)	
	Civil/Structural	24,519,000	0.12	29,423	
CTD	Mechanical	21,227,000	0.60	127,362	
STP	Electrical & Inst.	11,936,000	0.60	71,616	
	Total	57,682,000		228,401	

^{*}Source: Guidelines for operation and management of public sewerage (Ministry of Environment in Korea)

4.8.2.6 Replacement Cost

Replacement cost is the cost required for replacement of mechanical, electrical and instrumentation equipment. It is calculated assuming that equipment is replaced every 15 years.

Table 4-171 Replacement Cost

		Construction Cost	Replacement	Cost (US\$)			
Category 		(US\$)	Cycle	Annual (US\$/year)	40 years		
	Mechanical	21,227,000	15 years	1,061,350	42,454,000		
STP	Electrical & Inst.	11,936,000	15 years	596,800	23,872,000		
	Total	33,163,000		1,658,150	66,326,000		

4.8.3 Measures When a problem occurs

Unexpected situations can occur when operating sewage treatment plants. Since there are many things that cannot be artificially controlled, appropriate follow-up measures should be taken to prevent deterioration in the quality of treated water. Possible problems and countermeasures are as follows.

4.8.3.1 Insufficient Inflow

If the inflow rate is less than the design value, the residence time of the bioreactor is excessively extended, and the F/M ratio is maintained very low than the design value, and efficient nitrogen and phosphorus removal is difficult, the quality of treated water may be deteriorated. Therefore, if this phenomenon continues, reduce the number of series operated to maintain the residence time by using the fact that the reactors are designed and constructed for each series. For example, when operating with 3 series, if the inflow flow rate is too low and the residence time is extended by more than twice the design value, take an action by stopping the operation of 1 series to reduce the residence time and operate only with 2 series, so that the stay time and F/M is operated within the appropriate range.

4.8.3.2 Excessive Inflow

Excessive inflow can be seen in two cases: the inflow of infiltrate due to heavy rain during the rainy season and the excessive flow generated in the sewage treatment area.

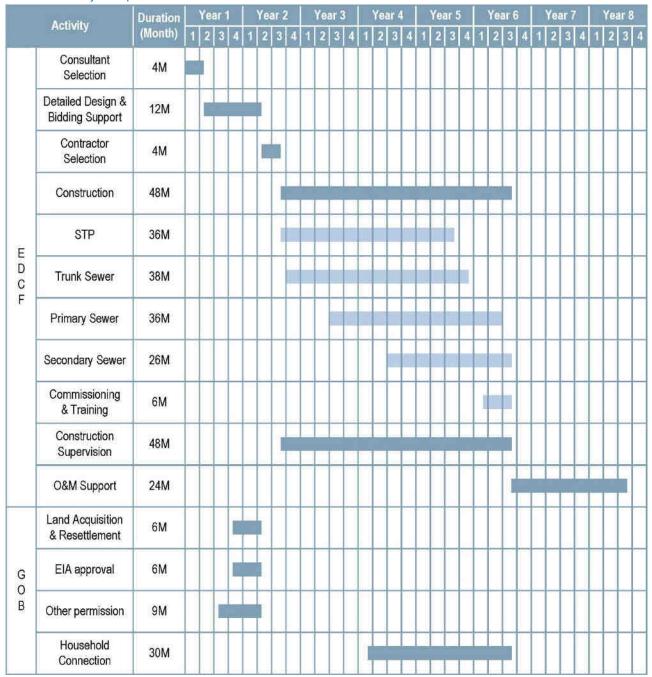
4.8.3.2.1 The inflow of infiltrate due to heavy rain during the rainy season

In case of excessive inflow of inflow water, the flow rate increases, but the concentration of influent water significantly decreases, so in most cases the total inflow load is the same as the average value. The turbidity of the effluent increases due to the inflow of soil, but it does not significantly affect the effluent quality because it is not a substance that causes BOD. Therefore, it is treated within the range that does not exceed the capacity, and if the inflow load is excessive after analyzing the influent properties, the aeration time of the aeration/non-aeration cycle is extended so that pollutant treatment is not over-loaded.

4.8.3.2.2 The excessive flow generated in the sewage treatment area

If excessive flow occurs due to problems such as population growth in the treatment area, a step-by-step sewage treatment facility expansion plan should be established to increase the sewage treatment capacity. However, in the short term, it is necessary to devise a plan to discharge the discharged water by processing the maximum amount of generated flow through appropriate measures in the sewage treatment facility. Therefore, the total pollutant load is reviewed through accurate property analysis of the inflow water, and the treatment capacity is calculated. In addition, changes in BOD, COD, NH4-N, NO3-N, and PO4-P during the aeration/non-aeration cycle are analyzed, and if the removal is not smooth, the aeration/non-aeration cycle is recalculated by extending the aeration time.

When the inflow rate is temporarily excessive, it is possible to treat it with a simple operation because the microorganisms in the sewage treatment facility can decompose the temporarily increasing pollutants to some extent. However, in the case of a long-term phenomenon that lasts for several months, a stable treatment plan should be sought through the above measures.



4.9 Project Implementation Period

Project implementation period is planned as 92 months after loan approval as below. It may be extended upon the request of the GOB and with a prior consent from the KEXIM.

- Consultant selection: 4 months
- Detailed design & bidding support: 12 months
- Contractor selection: 4 months
- Construction and construction supervision: 48 months (including 6 months of commissioning & training)
- O&M support after construction completion: 24 months

Table 4-172 Project Implementation Period

Note) Household connection will be constructed sequentially by GOB according to the construction of sanitary sewer.

5 Project Executing Agency

5.1 Project Executing Agency

5.1.1 General

CWASA was established in the CCC area of Chattogram City by Ordinance No. 19 announced in 1963 as a municipality with overall responsibility for the operation and management of water and sanitation. Through the WASA Act revised in 1996, CWASA was announced as a water supply management agency, and in 2008, it was announced as a water supply and sewage management agency. CWASA is composed of a board of directors of 13, and its main roles are water source management, water supply and management.

5.1.2 Organization

CWASA has been managing Chattogram's water supply and sewerage since 1964. It consists of management, finance, technology and operations departments, and the total number of employees increased from 1,048 in 2016 to 1,624 in 2022.

CWASA's organizational structure consists of seven to nine positions, and the CEO is appointed by the board of directors.

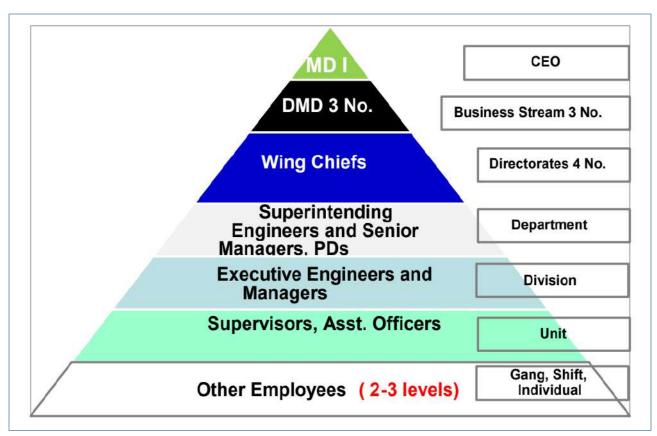


Figure 5-1 CWASA Organization Structure

CWASA consists of 1,624 employees in 2022, an increase of 345 compared to 2020. The detailed increase or decrease is as follows.

Table 5-1 CWASA's Employees

Catamany	Employees							
Category	2020	Inlet	Outlet	2022				
First Class	116	38		154				
Second Class	67	19		86				
Third Class	553	230	20	763				
Fourth Class	543	78		621				
Total	1,279	365	20	1,624				

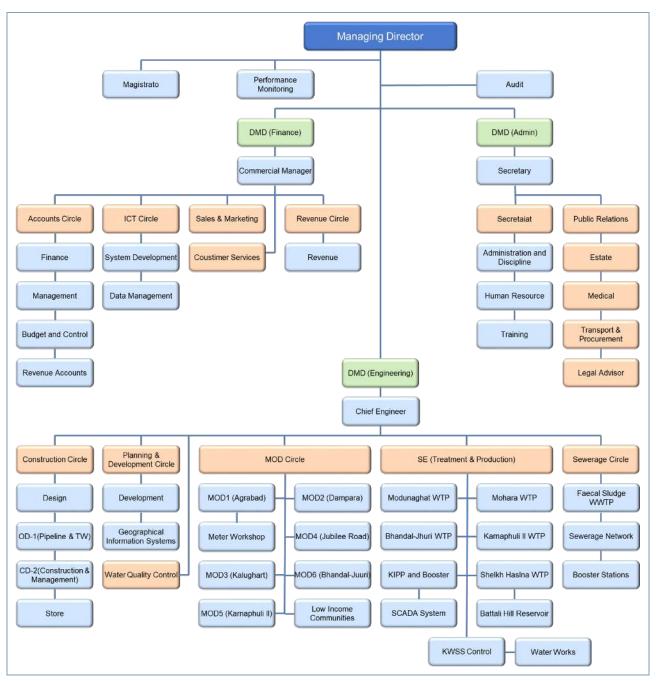


Figure 5-2 CWASA Organization diagram

5.1.3 Similar Project Experiences

5.1.3.1 EDCF Project

According to the Export and Import Bank of Korea, EDCF's total approved loan amount for 30 projects in Bangladesh since 2000 is 1,710 million USD as below. There is one water supply and sewerage similar project in Dhaka and one in Chattogram, so CWASA has enough capacity to perform EDCF projects.

Table 5-2 List of EDCF Project

No.	Project	Project Cost (Million USD)	Loan Approval Year
1	Dhaka Water Supply development project	46,906	2011
2	Bhandal Jhuri Water Supply development project	179,648	2014 & 2021
	Total	223,109	

5.1.3.2 WASA Project in Bangladesh

The main projects of WASA in Bangladesh are as follows. There are five similar projects carried out by CWASA in the last 10 years. It is judged that there will be no difficulties in implementing the project as he has experience in project implementation funded by MDBs such as WB and AFD.

Table 5-3 CWASA Project List

No.	Project	Loan	Period	Construction cost (million)
1	Chattogram Metropolitan Sewerage Project for North Kattoli Catchment	AFD	2021-2026	Proceeding
2	Additional Financing to Chittagong Water Supply Improvement and Sanitation Project	World Bank	2017–2020	\$47.50
3	Urban Water Supply and Sanitation in 23 Pourashava Project	IDB	2017–2021	\$82.30
4	Dhaka Water Supply Network Improvement Project	AFD	2016–2021	\$275.00
5	Saidabad Water Treatment Plant Project (Phase 3)	AFD, Danida, EIB	2015–2020	\$360.00
6	Dahserkandi Sewage Treatment Plant Project	Government of the PRC	2015–2019	\$258.00
7	Karnaphuli Water Supply Project (Phase 2)	JICA	2013–2021	¥34,847.0
8	Dhaka Environmentally Sustainable Water Supply Project	AFD, AFD, EIB	2013–2020	\$450.00
9	Padma Water Treatment (Phase 1)	Government of the PRC	2013–2019	\$269.00
10	Bandar–Juri Water Supply Project	EDCF	2015–2020	\$97.00
11	Khulna Water Supply Project	AFD, JICA	2011–2019	AFD: \$75.0 JICA: ¥15,729
12	Chittagong Water Supply Improvement and Sanitation Project	World Bank	2010–2020	\$170
13	Dhaka Water Supply Sector Development Program	AFD	2007-2020	\$200

5.1.3.3 Lessons learned and Suggested

Referring to the ex-post evaluation of the aforementioned EDCF project and the Chattogram water supply and sanitation project, lessons and recommendations are proposed for the smooth progress of this project as follows.

5.1.3.3.1 Lesson learned

5.1.3.3.1.1 Success Factor Review

- Maintaining closeness with the government policy of the recipient country and establishing a sense of ownership
 - The sewerage project is a high-priority project among the national goals in Bangladesh, and efforts were made to ensure that the project proceeds appropriately in connection with the policy goals.
 - Bangladesh government and CWASA tried to effort even after the detailed design was completed by promoting the project with a sense of ownership.
 - CWASA efforts to install sewage and drainage facilities, expand supply, and improve consumer convenience.
- Setting project goals that reflect reality
 - The project goal was set so that it could become a realistic plan by reviewing and verifying the sewerage coverage rate and project scope established in the feasibility study at the detailed design stage.

5.1.3.3.1.2 Limiting Factor Review

- Delay in land acquisition administrative procedures
 - Since land acquisition is not completed before the start of construction, measures such as strengthening the verification procedure for land acquisition and improving the land acquisition administrative procedure in the recipient country are necessary for efficient project management.
- Increasing project period
 - The project management should be thoroughly managed so that the project period does not increase due to delays in the recipient country's administrative processing, delays in bid evaluation, difficulty in supplying materials, and diversion of contingencies costs.

5.1.3.3.2 Suggestions

5.1.3.3.2.1 EDCF

- Efforts to complete within the project period
 - In general, the project period is often delayed due to various factors. Nevertheless, based on the feasibility study, efforts should be made to minimize changes in project implementation such as detailed design and construction.
 - The EDCF and the contractor should make efforts to efficiently carry out the project and shorten the construction period by reducing uncertainty in the project process through close consultation with the PEA and enhancing the understanding of the local situation.
- Capacity building for the recipient country
- Establishment of the logical framework and management point

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

Preparation of measures to prevent delays in the loan project period

5.1.3.3.2.2 The recipient country

- Establishment of a cooperative system between government agencies and ministries in Bangladesh
- Expansion of supply of sewage and drainage facilities and establishment of long-term sanitationrelated plans

5.1.3.3.2.3 CWASA

- Prepare measures to the logical framework indicators and enhance reliability
 - For a smooth evaluation of the logical framework, the recipient country should continuously
 manage the data that is the basis for the evaluation of each performance indicator, and in this
 case, efforts are needed to secure the reliability of the related data.
- Reinforcement of on-site training and secure financial resources
 - Since there is a possibility that the continuity of work in the relevant field may be hindered due to the high turnover rate of technical workers, on-site training for technical workers should be strengthened.
 - Considering that it is difficult to adequately supply the required drainage and water supply lines with only the current income, it is important to strengthen the profit base and make an effort to secure investment resources stably for the sustainability of fiscal soundness.
- Promotion of installation of drainage facilities and efforts to protect water resources
 - The untreated sewage from the project site is discharged into the river upstream of the water supply source. There is a possibility of causing pollution, and as a countermeasure against this, it is necessary to prepare effective measures to protect water resources, such as active publicity and support measures for installation of drainage facilities.

5.2 Project Organization Structure

5.2.1 Project Implementation Organization

Chattogram Water Supply and Sanitation Authority (CWASA) will be the Project Executing Agency (PEA) for the Project and will be in charge of planning, implementation, management, supervision, and coordination of the Project and forwarding relevant reports to the KEXIM. CWASA plans to establish a project management organization (PMU) during the project implementation period after the loan approval.

Table 5-4 R&R of Project Implementation Organizations

Table 0 4 Train	t of Project implementation organizations
Organization	Roles and Responsibilities
PEA (CWASA)	 Overall day-to-day project management, monitoring and evaluation Establishes and maintains Project Management Unit (PMU) Provides technical and institutional capacity building support Reports to KEXIM
PMU in CWASA	 Responsible for overall project management, implementation and monitoring Monitors and ensures the compliance of covenants, particularly timely submission of audited project accounts and compliance with safeguard requirements Maintaining project accounts and project financial records Reviews the reports submitted by consultant with respect to detailed design, costs, safeguards, financial, economic, and social viability Prepares, with the support of the consultant, bidding documents, request for proposals, bid evaluation reports and negotiations Serves as point of contact with KEXIM, maintains project documents, and submits timely reports (quarterly progress reports and project completion report) to KEXIM Organizes project orientation between stakeholder group including Chattogram municipality by elaborating scope of the project and sharing about their participation
MoF	Financial oversight. Ensures flow of funds to the project execution agency to ensure adequate budget for successful implementation of the project
DoE	Regulator for wastewater management and pollution control Monitors compliance with environmental regulation
KEXIM	Loan approval and financial support Execution of project expenses for purchase approval, etc Reviews executing agency and implementing agency's

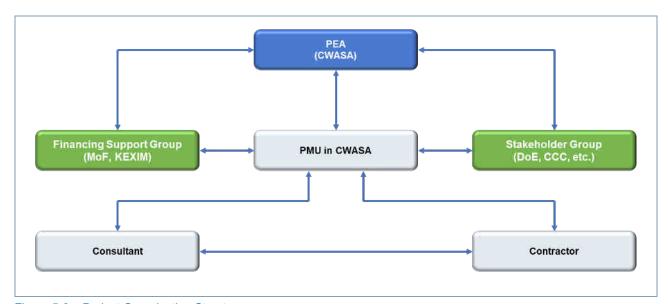


Figure 5-3 Project Organization Structure

5.2.2 Project Management Unit

5.2.2.1 Role of PMU

PMU will act as a key player in this project as well as a coordinator to communicate with relevant authorities. The PMU will be supported by consultants for project management, capacity building, monitoring, and technical supervision support. Consulting firms will be recruited under the project to support project management, design and construction supervision, capacity building, and community awareness.

- Serve as a core unit in project implementation and management
- Plan work activities and budgets based on project implementation schedule
- Manage, prepare and assign administrative works, and human resources
- Manage, review and monitor contract performance of consulting and construction firm
- Coordinate the implementation of environmental and social impact addressing plan
- Manage and review monitoring and evaluation of project implementation
- Coordinate and cooperate with other ministries, institutions, and relevant authorities for the project implementation
- Organize regular meetings to discuss progress with project team-members and all stakeholders including construction firm, consulting firm, development partners, etc.
- Preparation of reports on major issues, such as information documents, environmental social impact assessment reports, financial reports, etc., and reporting to the board of directors, etc.

5.2.2.2 PMU Organization

CWASA plans to establish a project management organization (PMU) during the project implementation period after the loan approval. PMU of the project will be composed of 24 personnel, with a superintending engineer serving as the team leader, engineers in civil, mechanical, electrical & instrumentation, sanitary sewer section and supporting staffs as below.

Table 5-5 Personnel Composition of PMU

No.	Category	No. of Person	Remarks
	Superintending Engineer (Project Director)	1	
	Deputy Project Director	1	
Technical	Executive Engineer	4	
Staff	Assistant Engineer	4	
	Sub-Assistant Engineer	8	
	Sub-Total	18	
	Office Manager	1	
	Accountant	1	
Supporting	Computer Operator	1	
Staff	Office Assistant	2	
	Driver	6	
	Sub-Total	11	
	Total	29	

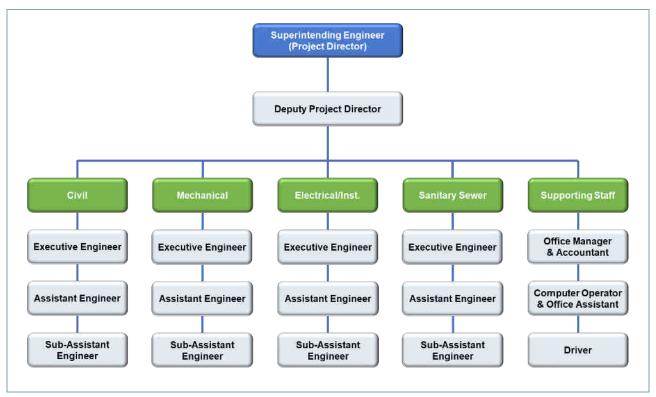


Figure 5-4 PMU Organization Chart

5.2.3 Case Study of PMU in similar project

5.2.3.1 Sanitation Master Plan

It consists of a total of seven employees, including the Chief Engineer proposed in the sewerage master plan, and is composed as follows to perform various tasks such as design and construction supervision.

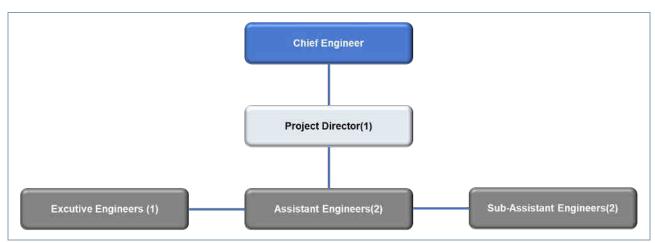


Figure 5-5 PMU composition in Sanitation Master Plan

5.2.3.2 Karnaphuli Water Supply Project (Phase 2) (KWSP-2)

The PMU composition of the Karnaphuli water supply project consisted of a total of 26 people, among which 21 contract workers were composed of 17 assistant engineers, 1 accountant, and 3 office assistant and computer assistants. Among the 22 engineers, 12 were civil engineers, 3 were mechanical engineers, and 7 were electrical engineers in the PMU.

Table 5-6 KWSP-2 PMU

No.	Category	Stay	Non-Stay	Contract Worker	Total	Remarks
1	Chief Engineer (Project Director)	-	1	-	1	Mechanical: 1
2	Superintending Engineer (Deputy Project Director)	1	-	-	1	Mechanical: 1
3	Executive Engineer	-	2	-	2	Civil: 1 Electrical: 1
4	Assistant Engineer	-	1	5	6	Civil: 5 Electrical: 1
5	Sub-Assistant Engineer	-	-	12	12	Civil: 6 Mechanical: 1 Electrical: 5
6	Accountant	-	-	1	1	
7	Office Assistant cum Computer Typist	-	-	3	3	
Total		1	4	21	26	

^{*}Source: CWASA

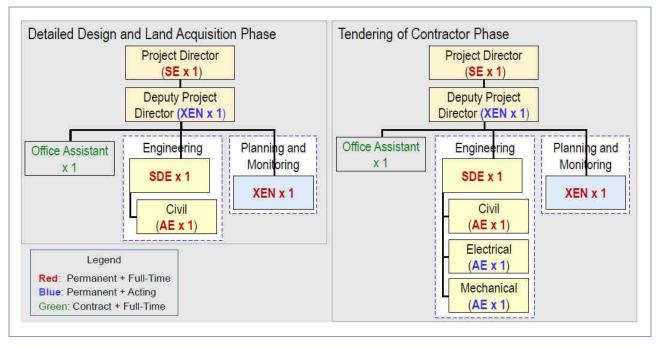
5.2.3.3 Chattogram Sewerage System Establishment Project (Phase 1) (PESSCM-1)

The PMU composition of the Chattogram Sewerage System Establishment Project (Phase 1) consisted of a total of 17 people, among which 11 contract workers were composed of 7 assistant engineers, 1 driver, 2 office assistants and 1 computer operator. By field, among the 13 engineers, 4 were civil engineers, 4 were mechanical engineers, and 5 were electrical engineers.

Table 5-7 PESSCM-1 PMU

No.	Category	Stay	Non-Stay	Contract Worker	Total	Remarks
1	Chief Engineer (Project Director)	-	1	-	1	Electrical: 1
2	Superintending Engineer (Deputy Project Director)	1	-	-	1	Mechanical: 1
3	Assistant Engineer	1	1	1	3	Mechanical: 1 Electrical: 1
4	Sub-Assistant Engineer	-	2	6	8	Civil: 4 Mechanical: 2 Electrical: 2
5	Computer Operator	-	-	1	1	
6	Driver	-	-	1	1	
7	Office Assistant	-	-	2	2	
Total		2	4	11	17	

^{*}Source: CWASA


5.2.3.4 Chattogram Sewerage System Establishment Project (Catchment 2&4)

The PMU of the Chattogram sewage system establishment project (Catchment 2&4), which is undergoing a feasibility study, was divided into detailed design stage, bidding stage, and construction stage, and consisted of 41 people.

Table 5-8 Catchment 2&4 PMU

		Detailed Design				Bidding			Construction		
No.	Category	Stay	Non- Stay	Contract Worker	Stay	Non- Stay	Contract Worker	Stay	Non- Stay	Contract Worker	Total
1	Superintending Engineer	1	-	-	1	-	-	1	-	-	3
2	Executive Engineer	1	1	-	1	1	-	1	1	-	6
3	Assistant Engineer	1	-	-	1	-	-	1	-	-	3
4	Assistant Engineer	1	-	-	1	2	-	1	2	3	10
5	Sub-Assistant Engineer	-	-	-	-	-	-	-	3	9	12
6	Accountant	-	-	-	-	-	-	1	-	-	1
7	Computer Operator	-	-	-	-	-	-	-	-	1	1
8	Driver	-	-	-	-	-	-	-	-	-	1
9	Office Assistant	-	-	1	-	-	1	-	-	2	4
Total		4	1	4	4	3	1	5	6	16	41

^{*}Source: JICA Survey Team

^{*}Source: JICA Survey Team

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

5.3 Project Readiness

5.3.1 Readiness of PEA

5.3.1.1 Organization & Project Experience

5.3.1.1.1 Organization

CWASA has a total of 1,624 employees, 79% of which are technical and support teams. In carrying out this project, it is judged that there will be no setbacks in project management, supervision, detailed design direction determination, and technical support for construction.

Table 5-9 CWASA Employee Composition

Category	Total	Overall	Inspection	Finance	Management	Technology	Operate
Total	1,624	5	17	117	193	451	841
Leader	72	1	3	14	13	24	17
Member	1,552	4	14	103	180	427	824
Composition Ratio (%)	100.0	0.3	1.0	7.2	11.9	27.8	51.8

5.3.1.1.2 Project Experience

Since its establishment, CWASA has been steadily carrying out loan projects related to water supply and sewage, and is currently ready to carry out six sewage treatment zones at the same time. Therefore, it is judged that there will be no difficulties in carrying out this project in CWASA.

5.3.1.2 Readiness of PEA

CWASA plans to establish a project management organization (PMU) during the project implementation period after the loan approval. PMU of the project will be composed of 24 personnel, with a chief engineer serving as the team leader, engineers in civil, mechanical, electrical & instrumentation, sanitary sewer section and supporting staffs.

5.3.2 Land Acquisition & Resettlement

Proposed site of sewage treatment plant has been owned by CWASA since 1960s, so the land acquisition is not required. However, there are illegal residents in the proposed site even though there no schools and mosques, resettlement action plan should be prepared by CWASA during the project implementation.

There is no requirement for the buffer zone from STP to the resident area in the environmental regulation of Bangladesh, odour control facility will be constructed in the STP and odour mitigation measures shall be analyzed in the ESIA during the project implementation.

Table 5-10 Land Use of Sewage Treatment Plant Site

No.	Category	Total	A1	A2	A3	Remarks
1	Common House (Tin-roofed)	49	9	6	34	
2	Common House (Brick building)	11	2	5	4	
3	Cattle Farm	8	-	3	5	
4	Two-story Building	2	-	2	-	
5	Three-story Building	2	-	-	2	
6	One-story Building	1	1	-		
7	CWASA Storage	1	-	1	-	
8	School	1	1	-	-	
9	Toilet	1	1	-	-	
10	Religious Facility	2	1	1	-	
11	Cemetery	4	3	1	-	
12	Pond	25	-	-	-	
13	Khal	1	-	-	-	
14	Dirt Road	3	-	-	-	
15	Paved Road	4	-	-	-	
16	BFS Road	1	-	-	-	
17	RCC Road	2	-	-	-	
18	RHD Road	1	-	-	-	
19	Railroad	1	-	-	-	
20	Forest	-	-	-	-	
21	Bridge	2	-	-	-	
22	Culvert	-	-	-	-	
23	Street Lamp	26	-	-	-	
24	Tree	5000 +	-	-	-	
25	Rice Field	210	-	-	-	

Figure 5-6 Proposed Site of Sewage Treatment Plant

6 Project Cost Estimate

6.1 Introduction

6.1.1 General

Project cost is estimated at US dollar (USD) in accordance with 'EDCF Feasibility Study Guideline (March 2022)' and it is classified into EDCF portion and Government of Bangladesh portion.

Project cost is composed of direct project cost and indirect project cost. Components of direct project cost are construction cost, commissioning & training cost, O&M support cost after construction completion, consulting service cost, physical and price contingencies. Components of indirect project cost are Taxes & duties, land acquisition & resettlement cost, project management cost and EDCF service charge.

- Construction cost includes the material and construction costs of the sewerage system such as sewage treatment plant, sanitary sewer, Household Connection, faecal sludge treatment plant, O&M vehicle.
- Commissioning & Training cost covers the training of the operating staffs and commissioning of sewerage system for six months before construction completion.
- O&M support cost covers the training of the operating staffs for two years after construction completion.
- Consulting service cost covers a) remuneration of foreign and local engineers and b) out-of-pocket expenses during the detailed design, bidding support and construction supervision.
- Contingencies are made up of physical and price contingencies.
 - Physical contingency is calculated as 2 % of a total amount of EDCF loan.
 - Price contingency is calculated as 2 % of a total amount of EDCF loan.
- Tax and duties cover Value Added Tax, Advance Income Tax and Custom Duty.
- Land acquisition and resettlement cost covers the land acquisition cost of proposed site of STP and resettlement cost for the local residents.
- Project management cost covers the remuneration & out-of-pocket expenses of PMU during project implementation period.
- EDCF service charge is the loan handling fee to operate the EDCF loan and it is estimated as 0.1% of a total amount of EDCF loan.

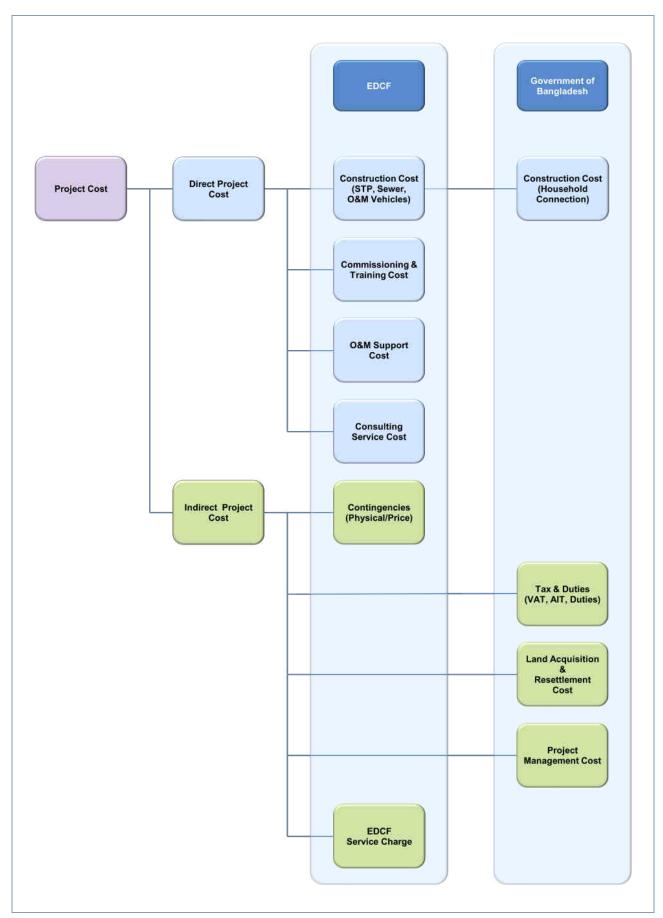


Figure 6-1 Project Cost Composition

6.1.2 Exchange Rate

6.1.2.1 Related Guide line

Applying the exchange rate of the 'EDCF Feasibility Study Guideline (March 2022)' for the project cost is as follows.

- KRW to USD: Average basic rate of exchange for previous 30 calendar days from the F/S contract from KEB Hana Bank as a final quote notification
- BDT to USD: Average basic rate of exchange for previous 30 calendar days from the F/S contract from KEB Hana Bank as a final quote notification
- In the case of an unnoticed exchange rate, KEB Hana Bank's unnoticed exchange rate for the same period
- However, if the exchange rate fluctuates by 3% or more compared to the exchange rate calculated by the above method during the F/S period, the latest applicable exchange rate (average basic rate of exchange for 15 days) may be applied.

6.1.2.2 Exchange Rate

In comparison of exchange rate between the average of previous 30 days (02.08.22~01.09.22) from the F/S contract (01.09.22) and the current day (10.05.23), exchange rate is fluctuated 0.3% for KRW to USD, 11.9% for KRW to BDT, and 13.1% for USD to BDT. In this project, the average exchange rate of previous 30 days from the date of F/S contract is applied in accordance with EDCF guideline.

- 1 USD = 94.95 BDT
- 1 USD = 1,325.50 KRW
- 1 BDT = 13.96 KRW

Table 6-1 Exchange Rate

Category	USD/KRW	BDT/KRW	USD/BDT	Remark
Average Rate (02.08.22~01.09.222)	1,325.50	13.96	94.95	Average of previous 30 calendar days from the F/S contract
Exchange Rate (10.05.23)	1,321.00	12.30	107.40	
Fluctuation Rate	-0.3%	-11.9%	13.1%	
Exchange Rate of the Project	1,325.50	13.96	94.95	

^{*}Source: KEB Hana Bank

6.1.3 Project Cost Components by Currency

Project cost components by currency is prepared in accordance with 'EDCF Feasibility Study Guideline (March 2022)' and it is classified into EDCF and Government of Bangladesh with the consideration of place of origin of materials and equipment and construction works of the sewerage system. In the feasibility study, it is not possible to specify the place of origin of the mechanical, electrical and instrumentation equipment, so it is planned to procure 70% of in foreign currency (Korea) and 30% in third countries.

Table 6-2 Project Cost Components by Currency

Table 6-2 P	. 5,000 0000 00111	ponents by Currency	EDCF		
Cat	tegory	Foreigr		Local	GOB
	Civil Works	• Overhead & profit • Sanitary Sewer (GRP)	3 rd Countries	Ready-mixed concrete Reinforcing bar Aggregates & other construction materials Earthworks, structural works and trench works Pavement works Architectural works Landscaping works Sanitary Sewer (HDPE) Manhole	Construction Cost (Household Connection)
Construction Cost	Mechanical Works	Pre-treatment facility (Slude Inlet pumping station facility Biological reactor facility Sedimentation facility Sludge thickening facility Sludge dewatering facility Odour control facility Chemical dosing facility		Local transport Piping & Installation	
	Electrical Works	Incoming power facility Power distribution system Stand-by power system Power control facility		Local transport Piping & Installation	
	Instrumentation Works	Monitoring and control facil Measuring instrument	ity	Local transport Piping & Installation	
		Commissioning & Training cost O&M support after construction completion Consulting service cost Contingencies (physical/price) EDCF service charge	Contingencies (physical/price)	 Consulting service cost Commissioning & Training cost O&M support after construction completion Contingencies (physical/price) 	Taxes & duties Land acquisition & resettlement cost Project management cost

Note) Project cost component is subject to change during the detailed design stage & construction stage.

6.2 Direct Project Cost

Direct project cost is composed of construction cost, commissioning & training cost, O&M support cost after construction completion and consulting service cost.

6.2.1 Construction Cost

6.2.1.1 General

Construction Cost has been prepared for the sewerage system of the project scope for civil works, architectural works, mechanical works, electrical works and Instrumentation works incorporated with carry the construction materials and equipment into the site, site preparation, mobilization, dismantle work etc. Construction cost also involves earthwork for excavation, filling of earth, concrete, Pipe work, Pilling work, internal road works, installation of mechanical equipment and electrical equipment etc. There are some Indirect Cost accounted for Construction cost such as contractor's overhead & profit as per the International and Bangladesh applicable regulations.

Construction cost is estimated according to common engineering practices by multiplying of unit rates of respective component with quantities. Bills of quantities are prepared based on the preliminary design deliverables such as process calculation of sewage treatment plants, hydraulic calculation of sanitary sewer, preliminary design drawings.

Calculation of the unit rates of respective component is estimated based on relevant data on costs of labour, materials, consumables, equipment and estimates for general items collected in Bangladesh and at international market.

6.2.1.2 Preliminary

Construction preparation cost of the contractor are directly related to the running of the project that are not accounted for construction works such as performance bond, insurance, site office & vehicles, etc. are included in the Preliminary category of the Bills of Quantities.

6.2.1.3 Civil & Architectural Works

The basic cost of each major type of civil and construction work was calculated by referring to on-going sewerage project in Chattogram and the schedule of rates updated by different department of Bangladesh. In some cases, analysis of rates has conducted due to unobtainability of rate prepared by different department.

Although Chattogram Water Supply and Sewerage Authority (CWASA) doesn't have the Schedule of rates, Consultant has followed some alternative sources items rate for construction materials, labor, equipment, etc., The sources of basic data are as follows.

- Public Works Department (PWD), Bangladesh schedules of rates (2022)
- Local Government Engineering Department (LGED), Bangladesh schedules of rates (2022)
- Roads & Highways Department (RHD), Bangladesh schedules of rates (2022)
- Bangladesh Water Development Board (BWDB), Bangladesh schedules of rates (2022)
- Bangladesh Bureau of Statistics report (2022.12)
- Material & Equipment supply rates from Vendors in International Market

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

The construction cost of trenchless method is estimated by applying the quotation of a Korean specialized company because there was no company in Bangladesh that could perform the construction of trenchless. The cost of materials was calculated by applying the average of the estimated cost of Korean companies, and by applying 5% of the cost of ocean transportation and insurance as other expenses.

6.2.1.4 Mechanical, Electrical & Instrumentation Work

Mechanical, electrical & instrumentation works are estimated based on the quotation from various manufacturers. Average rate of quotation is adopted for basic cost. In the feasibility study, it is not possible to specify the place of origin of the mechanical, electrical and instrumentation equipment, so it is planned to procure 70% of in foreign currency (Korea) and 30% in third countries (OECD members). Other costs of imported equipment were calculated by applying the following rates.

Shipping and Insurance: 5.0%

Local Transportation: 1.5%

Installation: 10.0%

Pipes and accessories: 15.0%

6.2.1.5 Overheads

Overheads are costs that are not directly required to complete the construction object, but are incurred to manage the construction, and include the following items:

- Head office costs: stationery, stamps, Communications cost, depreciation of office owned furniture's, head office salaries, Legal consultation.
- Head office building: rent, lighting, heating, depreciation, repairs, insurances, etc.
- Finance costs: interest on bank overdrafts, bank charges, etc

In general, 3.5% of indirect cost is applied to local construction performed by a local company in Bangladesh, but 10% of the construction cost was applied as indirect cost considering the characteristics of this project, which is constructed by a Korean company as an EDCF loan project.

6.2.1.6 Profits

In general, 10% profit is applied to local construction performed by a local company in Bangladesh, but 15% of the construction cost was applied as profit considering the characteristics of this project, which is constructed by a Korean company as an EDCF loan project.

6.2.1.7 Construction Cost

Construction cost of the sewerage system of the project scope for civil works, architectural works, mechanical works, electrical works and Instrumentation works is estimated at US\$ 162,106 thousands.

Table 6-3 Construction Cost

	EDCF						
Category	For	eign		0.1.7.4.1	GOB	Total	
	Korea	3 rd Countries	Local	Sub Total			
1. Construction Cost	37,532	7,114	110,945	155,591	6,515	162,106	
1.1 Preliminary	276	-	1,566	1,842	-	1,842	
1.2 Sewage Treatment Plant	20,277	7,114	30,290	57,681	-	57,681	

		ED	CF			
Category	For	eign			GOB	Total
outegory	Korea	3 rd Countries	Local	Sub Total	305	Total
a) Civil Works	2,923	-	16,561	19,484	-	19,484
b) Architectural Works	755	-	4,280	5,035	-	5,035
c) Mechanical Works	11,275	4,832	5,120	21,227	-	21,227
d) Electrical Works	3,316	1,421	3,135	7,872	-	7,872
e) Instrumentation Works	2,009	861	1,194	4,064	-	4,064
1.3 Sanitary Sewer	16,979	-	78,269	95,248	-	95,248
a) Trunk Sewer	9,622	-	41,927	51,549	-	51,549
- Open Trench	397	-	709	1,106	-	1,106
- Trenchless	9,224	-	41,218	50,442	-	50,442
b) Primary Sewer	6,380	-	30,802	37,182	-	37,182
- Open Trench	3,766	-	15,994	19,760	-	19,760
- Trenchless	2,613	-	14,808	17,421	-	17,421
c) Secondary Sewer	978	-	5,540	6,518	-	6,518
- Open Trench	978	-	5,540	6,518	-	6,518
1.4 Household Connection	-	-	-	-	6,515	6,515
1.5 O&M Vehicles	-	-	820	820	-	820

6.2.2 Commissioning & Training Cost

Commissioning & Training cost covers the training of the operating staffs and commissioning of sewerage system for six months before construction completion. The cost consists of: a) remuneration for engineers, b) direct cost and c) out-of-pocket expenses. The remuneration is based on 18 M/M of foreign engineer and 24 M/M of local engineer in accordance with mobilization plan.

Table 6-4 Commissioning & Training Cost

Description [Description	Cost (US\$ thousands)				
	Description	Foreign	Local	Total		
Remuneration	Mobilization of experts	295	111	406		
Direct Cost	Water quality analysis	-	720	720		
Out-of-Pocket Expenses	Per-diem Allowances, Accommodation, Air Fare, Rental Car	125	-	125		
	Total	420	831	1,251		

6.2.3 O&M Support Cost after Construction Completion

O&M support cost covers the training of the operating staffs for two years after construction completion of the project for two years in order to enhance the project effectiveness. The cost consists of: a) remuneration for engineers, b) out-of-pocket expenses. The remuneration is based on 72 M/M of foreign engineer and 96 M/M of local engineer in accordance with mobilization plan.

Table 6-5 O&M Support Cost after Construction Completion

Description	Description	Cost (US\$ thousands)				
Description		Foreign	Local	Total		
Remuneration	Mobilization of experts	1,179	444	1,623		
Out-of-Pocket Expenses	Per-diem Allowances, Accommodation, Air Fare, Rental Car	473	-	473		
	Total	1,652	444	2,096		

6.2.4 Consulting Service Cost

Consulting service cost consisting of detailed design, bidding support and construction supervision is calculated based on followings.

- It is calculated by adding up the direct labor cost calculated based on the manpower required for each task (detailed design & bidding support, construction supervision, etc.).
- Consulting service cost is US\$ 13,166 thousands, of which 77.9% is allocated to remuneration of
 foreign staffs including project manager in each area of expertise and relevant direct costs, and of
 which 22.1% is distributed to remuneration of local staffs having responsibility of assistance work and
 direct cost in connection with field survey works, i.e., topographic survey, household connection survey,
 geotechnical investigation, water quality survey, etc.
- Man-month rate of foreign staff is computed by combing Unit Labor Cost of Engineers (Korean Engineering & Consulting Association, 2022), technical cost, which is 110 % of the Unit Labor Cost of Engineers, and overhead & profit, which is 30 % of the Unit Labor Cost of Engineer and technology fee. The rate of local engineers is based on local market survey.

Table 6-6 Consulting Service Cost

Table 6-6 Cons	ulting Service Cos	L .						
Cata		Stat	ff Input (Man-M	onth)	Cost (US\$ thousands)			
Cate	gory	Foreign	Local	Sub-Total	Foreign	Local - 2,031 2,031 100 100 100 300 - 280 880	Total	
	Foreign Staff	191	306	497	8,721	-	8,721	
Remuneration	Local Staff	180	318	498	-	2,031	2,031	
	Sub-Total	371	624	995	8,721	2,031	10,752	
			oographical Surv hold Connection	•	-	100	100	
		Geo	technical Investi	gation	-	100	100	
Out of Doole	. t. C	W	ater Quality Sur	vey	-	100	100	
Out-of-Pocke	et Expenses		FEIA		-	300	300	
			Business Trip		1,534	-	1,534	
			Other Expense		-	280	280	
		Sub-Total			1,534	880	2,414	
		Total			10,255	2,911	13,166	

In this F/S, total 995 M/M (foreign staff 497 M/M, local staff 498 M/M) of professional staff will be mobilized during 64 months for the project implementation period (16 months for detailed design & bidding support, 48 months for construction supervision). In the detailed design and bidding support Phase, it is planned to input 371 M/M (foreign staff 191 M/M, local staff 180 M/M). In the construction supervision stage, it is planned to input 624 M/M (foreign staff 306 M/M, local staff 318 M/M).

Table 6-7 Summary of Mobilization Plan

Phase	Cotogony	Input (M/M)					
Filase	Category	Home	Field	Total			
Datailad Daaissa 0	Foreign Staff	93	98	191			
Detailed Design & Bidding Support	Local Staff	-	180	180			
	Sub-Total	93	278	371			
0 1 1	Foreign Staff	-	306	306			
Construction Supervision	Local Staff	-	318	318			
Ouper vision	Sub-Total	-	624	624			
	Foreign Staff	93	404	497			
Total	Local Staff	-	498	498			
	Total	93	902	995			

6.2.5 Direct Project Cost

Direct project cost is estimated at US\$ 178,619 thousands, which includes construction cost, commissioning & training cost, O&M support cost after construction completion and consulting service cost.

Table 6-8 Direct Project Cost (US\$ thousands)

	EDCF CONTROL OF THE C									
Category	For Korea	eign 3 rd Countries	Local	Sub Total	GOB	Total				
1. Construction Cost	37,532	7,114	110,945	155,591	6,515	162,106				
1.1 Preliminary	276	-	1,566	1,842	-	1,842				
1.2 Sewage Treatment Plant	20,277	7,114	30,290	57,681	-	57,681				
a) Civil Works	2,923	-	16,561	19,484	-	19,484				
b) Architectural Works	755	-	4,280	5,035	-	5,035				
c) Mechanical Works	11,275	4,832	5,120	21,227	-	21,227				
d) Electrical Works	3,316	1,421	3,135	7,872	-	7,872				
e) Instrumentation Works	2,009	861	1,194	4,064	-	4,064				
1.3 Sanitary Sewer	16,979	-	78,269	95,248	-	95,248				
a) Trunk Sewer	9,622	-	41,927	51,549	-	51,549				
- Open Trench	397	-	709	1,106	-	1,106				
- Trenchless	9,224	-	41,218	50,442	-	50,442				
b) Primary Sewer	6,380	-	30,802	37,182	-	37,182				
- Open Trench	3,766	-	15,994	19,760	-	19,760				
- Trenchless	2,613	-	14,808	17,421	-	17,421				
c) Secondary Sewer	978	-	5,540	6,518	-	6,518				
- Open Trench	978	-	5,540	6,518	-	6,518				
1.4 Household Connection	-	-	-	-	6,515	6,515				
1.5 O&M Vehicles	-	-	820	820	-	820				
2. Commissioning & Training	420	-	831	1,251	-	1,251				
3. O&M Support	1,652	-	444	2,096	-	2,096				
4. Consulting Service	10,255	-	2,911	13,166	-	13,166				
4.1 Detailed Design & Bidding Support	3,938	-	1,462	5,400	-	5,400				
4.2 Construction Supervision	6,317	-	1,449	7,766	-	7,766				
5. Direct Project Cost (1+2+3+4)	49,859	7,114	115,131	172,104	6,515	178,619				

6.3 Indirect Project Cost

Indirect project cost is composed of contingencies, tax and duties, land acquisition & resettlement cost, project management cost, EDCF service charge.

6.3.1 Contingencies

Contingencies are composed of physical and price contingencies of which are divided into Korea, 3rd countries and local currencies related to the project cost composition in accordance with the GOB internal policy and EDCF guideline.

6.3.1.1 GOB Internal Policy

Contingency of the total project cost is calculated in accordance with internal policy of the GOB as below.

- Physical contingency is calculated as 2 % of a total amount of EDCF loan.
- Price contingency is calculated as 8 % of a total amount of EDCF loan.

6.3.1.2 EDCF Guideline

6.3.1.2.1 Physical Contingencies

Physical contingency is calculated as 5 % of direct project cost to accommodate the difference between the quantities in the F/S stage and the implementation stage due to design changes and material specification change.

6.3.1.2.2 Price Contingencies

Price contingency is calculated by applying the inflation and fluctuation of exchange rate to sum of direct project cost and physical contingency.

- For foreign (Korea): applied the average inflation rate for project implementation period.
- For local (Bangladesh) and third country (OEDC member) currency: applied an aggregate of the average inflation rate for project implementation period and the fluctuation of exchange rate for past 3 years.

For price contingency, the average of inflation rates for the last 3 years is reflected as the inflation rate in 1st year, or commencement year of project implementation period.

Table 6-9 Inflation Rate for the Last 3 Years (%)

Category	2020	2021	2022	Average
Foreign (Korea)	0.54	2.50	5.09	2.71
Local (Bangladesh)	5.69	5.55	7.70	6.31
Foreign (3 rd Countries) (OECD Member)	0.73	2.82	8.24	3.93

^{*}Source: World Bank Open Data

The arithmetic means of annual inflation rates for the project preparation and implementation period, computed at compound interest on the basis of the average inflation rate for the last 3 years, is adopted as the inflation rate in this F/S.

The project implementation period is planned as 104 months including 12 months for project preparation, 4 months for consultant selection, 12 months for detailed design, 4 months for contractor selection, and 48 months for construction work.

Table 6-10 Yearly Average Inflation Rate (%)

	0		/							
Category	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Avg.
Foreign (Korea)	2.71	5.49	8.35	11.29	14.30	17.40	20.58	23.85	26.09	14.45
Local (Bangladesh)	6.31	13.03	20.16	27.75	35.81	44.39	53.50	63.19	70.03	37.13
Foreign (3 rd Countries) (OECD Member)	3.93	8.01	12.26	16.67	21.26	26.02	30.97	36.12	39.68	21.66

In addition to the average inflation rate, 50% of average exchange rate of USD to KRW for last 3 years is considered in estimating price contingency of local currency and 3rd Countries according to EDCF Guideline.

Table 6-11 Fluctuation of Exchange Rate

Category	2018	2019	2020	2021	2022	Average	Adopted
Exchange Rate (USD/KRW)	1,100.30	1,165.65	1,180.05	1,144.42	1,291.95		
Exchange Rate Change from Previous Year		65.35	14.40	35.63	147.53		
Fluctuation of Exchange Rate (%)		5.94	1.24	3.02	12.89	5.72	2.86

^{*}Source: Economic Statistics System, Bank of Korea

Price contingencies rate of the project is estimated as below.

Table 6-12 Price Contingencies Rate (%)

Category	Price Contingencies Rate (1+2)	Average Inflation Rate (1)	Fluctuation of Exchange Rate (2)
Foreign (Korea)	14.45	14.45	
Local (Bangladesh)	39.99	37.13	2.86
Foreign (3 rd Countries) (OECD Member)	24.52	21.66	2.86

6.3.1.2.3 Contingencies Calculated by EDCF Guideline

Physical contingencies and price contingencies of the project calculated by EDCF guideline are as below.

Table 6-13 Contingencies calculated by EDCF Guideline (US\$ thousands)

		EDCF					
Category		Fo	oreign	Local	Sub Total	GOB	Total
		Korea	3 rd Countries	Local			
Direct Project Cost		49,859	7,114	115,131	172,104	6,515	178,619
	Total	10,060	2,187	54,098	66,345	-	66,345
Contingencies	Physical Contingencies	2,493	356	5,757	8,606	-	8,606
	Price Contingencies	7,567	1,831	48,341	57,739	-	57,739

6.3.1.3 Contingencies

Contingencies calculated by internal policy of the GOB is applied to the project after discussion with the GOB.

Table 6-14 Contingencies (US\$ thousands)

		EDCF					
Category		Foreign		Local	Cub Total	GOB	Total
		Korea	3 rd Countries	Local	Sub Total		
EDCF Loan Amount		55,596	7,905	127,937	191,438	-	228,948
	Total	5,546	791	12,806	19,143	-	19,143
Contingencies	Physical Contingencies	1,109	158	2,561	3,828	-	3,828
	Price Contingencies	4,437	633	10,245	15,315	-	15,315

6.3.2 Taxes & Duties

6.3.2.1 Rate of Taxes & Duties

Tax and duties considered in the Project includes Value Added Tax, Advance Income Tax and Custom Duty, which are estimated as per the Bangladesh tax regulation as follows.

- Value Added Tax (VAT): 7.5% of construction cost and 15.0% of consulting service cost
- Advance Income Tax (AIT): 5.0% of construction cost and 10.0% of consulting service cost
- Custom Duty: 25.0% of material and equipment cost of civil, mechanical, electrical and instrumentation works where place of origin is foreign (Korea) or a third country (OECD member)

Table 6-15 Taxes & Duties Rate (%)

Category	Construc	tion Cost	Consulting Service Cost		
	Foreign	Local	Foreign	Local	
VAT	7.5	7.5	15.0	15.0	
AIT	5.0	5.0	10.0	10.0	
Custom Duty	25.0				

6.3.2.2 Taxes & Duties

In accordance with the Framework arrangement between the GOK and GOB concerning loans from EDCF for the years 2021 through 2025 (Oct, 2021), taxes & duties for the implementation of the Projects will be borne by the GOB.

- Article 6.1 Consular fees, duties, taxes and any other charges of a similar nature, as well as the requirements of obtaining import licenses and any other documents of a similar nature on the equipment, machinery and materials imported for the implementation of the Projects shall be exempted or borne by the Bangladesh Government.
- Article 6.2 Taxes including value added tax and other obligatory charges on the equipment, machinery and materials purchased in the People's Republic of Bangladesh for the implementation of the Projects shall be exempted or borne by the Bangladesh Government.

Table 6-16 Taxes & Duties (US\$ thousands)

EDCF							
Category	Foreign		Local		GOB	Total	
	Korea	3 rd Countries	Local	Sub Total			
Taxes & Duties	-	-	-	-	28,092	28,092	
VAT	-	-	-	-	13,895	13,895	
AIT	-	-	-	-	9,264	9,264	
Custom Duty	-	-	-	-	4,933	4,933	

6.3.3 Land Acquisition & Resettlement Cost

Proposed site of sewage treatment plant has been owned by CWASA since 1960s, so the land acquisition is not required. However, there are illegal residents in the proposed site even though there no schools and mosques, resettlement action plan should be prepared by CWASA during the project implementation and detail breakdown of the land acquisition & resettlement cost will be estimated through RAP.

In this feasibility, tentative land acquisition & resettlement cost is included in the project cost as below through the discussion with CWASA and it will be borne by the GOB.

Table 6-17 Land Acquisition & Resettlement Cost (US\$ thousands)

		ED				
Category	Fore	Foreign			GOB	Total
	Foreign	3 rd Countries	Local	Sub Total		
Land Acquisition & Resettlement Cost	-	-	-	-	500	500

6.3.4 Project Management Cost

Project management cost covers the remuneration & out-of-pocket expenses of PMU in CWASA during project implementation period and it will be borne by the GOB.

Table 6-18 Project Management Cost

					Project	Management Cos	t (US\$)
	Category	Number of People	M/M	Unit Cost (US\$/M)	Total	Remuneration	Out-of- Pocket Expenses
	Project Director	1	92	750	103,500	69,000	34,500
	Deputy Project. Director	1	92	736	135,424	67,712	67,712
Essential	Executive Engineer	4	368	736	541,696	270,848	270,848
	Assistant Engineer	4	368	559	411,424	205,712	205,712
	Sub-Assistant Engr.	8	736	407	599,104	299,552	299,552
	Sub-Total	18	1,656	3,188	1,791,148	912,824	878,324
	Office Manager	1	92	407	74,888	37,444	37,444
	Accountant	1	92	407	74,888	37,444	37,444
Command	Computer Operator	1	92	407	74,888	37,444	37,444
Support	Office Assistant	2	184	211	77,648	38,824	38,824
	Driver	6	552	280	309,120	154,560	154,560
	Sub-Total	11	1,012	1,712	611,432	305,716	305,716
Total		29			2,402,580	1,218,540	1,184,040

Table 6-19 Project Management Cost (US\$ thousands)

		ED					
Category	Foreign				GOB	Total	
Gulogory	Korea	3 rd Countries	Local	Sub Total	002		
Project Management Cost	-	-	-	-	2,403	2,403	

6.3.5 EDCF Service Charge

EDCF service charge is the loan handling fee to operate the EDCF loan and it is estimated as 0.1% of a total amount of EDCF loan and it will be borne by the EDCF.

Table 6-20 EDCF Service Charge (US\$ thousands)

Table of Ed Ed Colvide offers	idalis o zo – zbor corvict charge (cop anodounds)							
		ED						
Category	For	eign			GOT	Total		
	Korea	3 rd Countries	Local	Sub Total				
EDCF Service Charge	191	-	-	191	-	191		

6.4 Total Project Cost

6.4.1 Total Project Cost

In the total project cost of US\$ 228,948 thousands, the EDCF will provide a loan of US\$ 191,438 thousands and the GOB will bear the remaining US\$ 37,510 thousands as below.

Table 6-21 Total Project Cost (US\$ thousands)

		ED(CF			
Category		eign 3 rd	Local	Sub Total	GOB	Total
	Korea	Countries	Local	Oub Total		
1. Construction Cost	37,532	7,114	110,945	155,591	6,515	162,106
1.1 Preliminary	276	-	1,566	1,842	-	1,842
1.2 Sewage Treatment Plant	20,277	7,114	30,290	57,681	-	57,681
a) Civil Works	2,923	-	16,561	19,484	-	19,484
b) Architectural Works	755	-	4,280	5,035	-	5,035
c) Mechanical Works	11,275	4,832	5,120	21,227	-	21,227
d) Electrical Works	3,316	1,421	3,135	7,872	-	7,872
e) Instrumentation Works	2,009	861	1,194	4,064	-	4,064
1.3 Sanitary Sewer	16,979	-	78,269	95,248	-	95,248
a) Trunk Sewer	9,622	-	41,927	51,549	-	51,549
- Open Trench	397	-	709	1,106	-	1,106
- Trenchless	9,224	-	41,218	50,442	-	50,442
b) Primary Sewer	6,380	-	30,802	37,182	-	37,182
- Open Trench	3,766	-	15,994	19,760	-	19,760
- Trenchless	2,613	-	14,808	17,421	-	17,421
c) Secondary Sewer	978	-	5,540	6,518	-	6,518
- Open Trench	978	-	5,540	6,518	-	6,518
1.4 Household Connection	-	-	-	-	6,515	6,515
1.5 Faecal Sludge Management	-	-	820	820	-	820
2. Commissioning & Training	420	-	831	1,251	-	1,251
3. O&M Support	1,652	-	444	2,096	-	2,096
4. Consulting Service	10,255	-	2,911	13,166	-	13,166
4.1 Detailed Design & Bidding Support	3,938	-	1,462	5,400	-	5,400
4.2 Construction Supervision	6,317	-	1,449	7,766	-	7,766
5. Direct Project Cost (1+2+3+4)	49,859	7,114	115,131	172,104	6,515	178,619
6. Contingencies	5,546	791	12,806	19,143	-	19,143
6.1 Physical Contingencies	1,109	158	2,561	3,828	-	3,828
6.2 Price Contingencies	4,437	633	10,245	15,315	-	15,315
7. Taxes and Duties	-	-	-	-	28,092	28,092
7.1 Value Added Tax (VAT)	-	-	-	-	13,895	13,895
7.2 Advance Income Tax (AIT)	-	-	-	-	9,264	9,264
7.3 Custom Duties	-	-	-	-	4,933	4,933
8. Land Acquisition & Resettlement Cost	-	-	-	-	500	500
9. Project Management Cost	-	-	-	-	2,403	2,403
10. EDCF Service Charge	191	-	-	191	-	191
11. Total Project Cost (5+6+7+8+9+10)	55,596	7,905	127,937	191,438	37,510	228,948

6.4.2 Financing Plan

Out of the total project cost of US\$ 228,948 thousands, US\$ 191,438 thousands will be financed through loan from EDCF, of which Korea portion is US\$ 55,596 thousands, 3rd Countries portion is US\$ 7,905 thousands and local portion is US\$ 127,937 thousands while the GOB will bear the remaining US\$ 37,510 thousands.

EDCF will provide a loan for the components such as construction cost, commissioning & training cost, O&M support cost, consulting service cost, contingencies, EDCF service charge and GOB will bear the cost for the components such as construction cost for household connection, tax & duties, land acquisition & resettlement cost, project management cost. Financing plan of the project is summarized as follows.

Table 6-22 Financing Plan

			ED				
Category		Foreign	Foreign 3rd Local		Sub Total	GOB	Total
Total Project Cost	Total Project Cost (US\$ thousands)		7,905	127,937	191,438	37,510	228,948
Dercentore (9/)	EDCF	29.0	4.1	66.8	100.0	-	-
Percentage (%)	Total	24.3	3.5	55.9	83.6	16.4	100.0

6.4.3 Annual Disbursement Plan

The project is to be implemented over 104 months taking into account the period required for project preparation, consultant selection, detailed design, bidding support, contractor selection and construction supervision. Annual Disbursement plan during project implementation period is as follows.

Table 6-23 Annual Disbursement Plan (US\$ thousands)

	Category	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Total
	1. Construction Cost	-	-	7,780	38,898	38,898	38,898	31,117	-	-	155,591
	2. Commissioning & Training	-	-	-	-	-	-	1,251	-	-	1,251
Е	3. O&M Support	-	-	-	-	-	-	356	1,048	692	2,096
D C	4. Consulting Service	-	4,608	1,580	1,580	1,975	1,975	1,448	-	-	13,166
F	5. Contingencies	-	-	957	4,786	4,786	4,786	3,828	-	-	19,143
	6. EDCF service Charge	-	5	10	45	46	46	37	1	1	191
	Sub-Total	-	4,613	10,327	45,309	45,705	45,705	38,037	1,049	693	191,438
	Construction Cost (Household Connection)	-	-			2,605	1,955	1,955	-	-	6,515
	2. Tax & Duties	-	-	1,405	7,023	7,023	7,023	5,618	-	-	28,092
G O B	Land Acquisition & Resettlement Cost	-	500	-	-	-	-	-	-	-	500
Б	Project Management Cost	-	240	360	384	409	409	360	120	121	2,403
	Sub-Total	-	740	1,765	7,407	10,037	9,387	7,933	120	121	37,510
Total Project Cost		-	5,353	12,092	52,716	55,742	55,092	45,970	1,169	814	228,948
Disb	ursement Rate (%)	-	2.34	5.28	23.03	24.35	24.06	20.08	0.51	0.36	100.00
Cumulative Disbursement Rate (%)		-	2.34	7.62	30.65	54.99	79.06	99.13	99.65	100.00	-

7 Economic & Financial Feasibility Analysis

7.1 Economic Feasibility Analysis

7.1.1 General

Economic feasibility analysis measures project cost and management cost needed for national policy project and estimated economic benefit. This is to analyze whether economic benefit exceeds cost by comparing two factors above.

In economic feasibility analysis, all measurable costs and benefits are measured to decide on validity of project. On the other hand, unmeasurable social benefits cannot be included in adequacy analysis.

Therefore, adequacy of national policy project cannot be judge only with measurable economic benefit, and noneconomic benefit and monetarily unmeasurable benefits should be in consideration to make final conclusion. This analysis uses internal rate of return (IRR) and cost-benefit analysis, which analyzes social profit and cost, to examine economic feasibility of this project.

7.1.2 Analysis Condition

7.1.2.1 Premise

- Analysis standard year: 2023
- Construction period including design period: 2024 ~ 2029 (6 years)
- Operation period of sewage facility: 2030 ~ 2069 (40 years)
- This project is a Phase 1, and benefits are the same after 2040

7.1.2.2 Discount Rate

To decide on economic feasibility of investment, benefits and costs calculated above should be compared but costs occur in early period and benefits in latter period. If benefits and costs of each year are simple added and compared, it would ignore time factor. Therefore, it is needed to turn future benefits and costs into present value and it could be done by discounting future benefits and costs with suitable discount rate.

Discount rate, in theory, is reasonable an expected income rate in present year and as for public enterprise, unlike private enterprise, it cannot use the actual interest of interbank rate as the expected rate of return. (For example, the three-year maturity distribution earning rate for corporate bonds, etc.) Therefore, social discount rate is used for interest rate discounting benefits and costs into present value.

Discount rate is generally set lower than market rate because the one who uses social discount rate to evaluate project validity normally becomes government and government would evaluate importance of future projects higher.

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

In the EDCF Feasibility Study Guideline (March, 2022), it is recommended to apply a discount rate of 9% for the economic feasibility analysis, the GOB have internal policy to apply a discount rate of 12% for the foreign funded projects.

In this feasibility study, discount rate of 12% is applied in the consideration of the GOB internal policy.

7.1.2.3 Inflation

In case of analyzing cost and benefits, when evaluating costs and benefits occurring in a period of time in future, a problem about how to handle effects of inflation occurs. But in this analysis, future benefits and costs are assumed as constant price of standard year to ignore inflation effect. That is because expecting future inflation is impossible and even if unexpected inflation occurs, it effects identically on costs and benefits, giving no change to net present value.

7.1.3 Analysis Method

7.1.3.1 General

Economic feasibility analysis is compared and analyzed by converting cost and benefit into monetary value to estimate economic feasibility. In the process of analysis, there is low chance for supervision of examiner to intervene and comparable cost and benefit are analyzed with uniform scale.

Benefit/cost ratio (B/C), net present value (NPV), and internal rate of return (IRR) are generally used for evaluation index of economic analysis.

7.1.3.2 Benefit/Cost Analysis (B/C)

Benefit/cost ratio is divided value of present value for total estimated benefit divided by present value of total estimated cost. It is considered to be economic if $B/C \ge 1$.

Benefit-Cost Ratio (B/C ratio) =
$$\sum_{t=0}^{n} \frac{B_t}{(1+r)^t} / \sum_{i=0}^{n} \frac{C_t}{(1+r)^t}$$

where,

- Bt = Present Value of Benefit
- C_t = Present Value of Cost
- r = Discount rate
- n = Number of Years of Project Endurance

7.1.3.3 Net Present Value Analysis (NPV)

Net present value equals present value for total estimated benefit subtracted by present value of total estimated cost. It is considered to be economic if NPV ≥ 0 .

Net Present Value (NPV) =
$$\sum_{t=0}^{n} \frac{B_T}{(1+r)^t} - \sum_{t=0}^{n} \frac{C_T}{(1+r)^t}$$

Final Report

Feasibility Study of Chattogram Metropolitan Sewerage Project for Fatehabad Component

7.1.3.4 Internal Rate of Return Analysis (IRR)

Internal rate of return equals present value for total estimated benefit being equal with present value of total estimated cost (NPV = 0). It is considered to be economic if IRR is greater than social discount rate.

Internal Rate of Return Analysis (IRR) =
$$\sum_{t=0}^{n} \frac{B_T}{(1+r)^t} - \sum_{t=0}^{n} \frac{C_T}{(1+r)^t}$$

7.1.3.5 Comparison between strengths and weaknesses of analysis methods

Strengths and weaknesses of benefit/cost analysis, net present value, and internal rate of return analysis methods are roughly shown below

Table 7-1 Comparison of method for economic feasibility analysis

Analysis method	Judgment	Strength	Weakness		
Benefit/Cost Analysis	B/C ≥ 1	Easily understandableProject scale consideredBenefit/cost occurring considered	Difficult to clearly differentiate between benefit and cost Possibility of error occurrence of mutually exclusive method selection Social discount rate realization		
Net Present Value	NPV ≥ 0	 Specific standard suggested when alternatives are chosen Present value of future benefit suggested Limited net present value considered Usable in other analysis 	 Difficult to clearly realize discount rate Difficulty in understanding Possibility of error in alternative priority selection 		
Internal Rate of Return IRR ≥ r • Abb • Co • Eva		Able to measure profitability of project Comparable with other methods Evaluation process result is easily understandable	Does not consider absolute scale of project Possibility of multiple internal rates of return occurrence		

7.1.3.6 Economic feasibility analysis method applied in this project

As shown in table above, in analysing economic feasibility, many methods such as benefit/cost ratio, new present value, and internal rate of return could be used but, in this project, economic feasibility would be analysed by widely used benefit/cost ratio analysis.

7.1.4 Cost Estimate

7.1.4.1 Project Cost Estimate

In the total project cost of US\$ 228,948 thousands, the EDCF will provide a loan of US\$ 191,438 thousands and the GOB will bear the remaining US\$ 37,510 thousands as below.

Table 7-2 Total Project Cost (US\$ thousands)

	F	ED(CF			
Category		eign 3 rd	Local	Sub Total	GOB	Total
	Korea	Countries	LUCAI	Sub Iolai		
1. Construction Cost	37,532	7,114	110,945	155,591	6,515	162,106
1.1 Preliminary	276	-	1,566	1,842	-	1,842
1.2 Sewage Treatment Plant	20,277	7,114	30,290	57,681	-	57,681
a) Civil Works	2,923	-	16,561	19,484	-	19,484
b) Architectural Works	755	-	4,280	5,035	-	5,035
c) Mechanical Works	11,275	4,832	5,120	21,227	-	21,227
d) Electrical Works	3,316	1,421	3,135	7,872	-	7,872
e) Instrumentation Works	2,009	861	1,194	4,064	-	4,064
1.3 Sanitary Sewer	16,979	-	78,269	95,248	-	95,248
a) Trunk Sewer	9,622	-	41,927	51,549	-	51,549
- Open Trench	397	-	709	1,106	-	1,106
- Trenchless	9,224	-	41,218	50,442	-	50,442
b) Primary Sewer	6,380	-	30,802	37,182	-	37,182
- Open Trench	3,766	-	15,994	19,760	-	19,760
- Trenchless	2,613	-	14,808	17,421	-	17,421
c) Secondary Sewer	978	-	5,540	6,518	-	6,518
- Open Trench	978	-	5,540	6,518	-	6,518
1.4 Household Connection	-	-	-	-	6,515	6,515
1.5 Faecal Sludge Management	-	-	820	820	-	820
2. Commissioning & Training	420	-	831	1,251	-	1,251
3. O&M Support	1,652	-	444	2,096	-	2,096
4. Consulting Service	10,255	-	2,911	13,166	-	13,166
4.1 Detailed Design & Bidding Support	3,938	-	1,462	5,400	-	5,400
4.2 Construction Supervision	6,317	-	1,449	7,766	-	7,766
5. Direct Project Cost (1+2+3+4)	49,859	7,114	115,131	172,104	6,515	178,619
6. Contingencies	5,546	791	12,806	19,143	-	19,143
6.1 Physical Contingencies	1,109	158	2,561	3,828	-	3,828
6.2 Price Contingencies	4,437	633	10,245	15,315	-	15,315
7. Taxes and Duties	-	-	-	-	28,092	28,092
7.1 Value Added Tax (VAT)	-	-	-	-	13,895	13,895
7.2 Advance Income Tax (AIT)	-	-	-	-	9,264	9,264
7.3 Custom Duties	-	-	-	-	4,933	4,933
8. Land Acquisition & Resettlement Cost	-	-	-	-	500	500
9. Project Management Cost	-	-	-	-	2,403	2,403
10. EDCF Service Charge	191	-	-	191	-	191
11. Total Project Cost (5+6+7+8+9+10)	55,596	7,905	127,937	191,438	37,510	228,948

7.1.4.1.1 Project Cost for Economic Feasibility Analysis

In the economic feasibility analysis, project cost excluding the price contingencies, tax & duties are considered only according to the EDCF guideline.

Table 7-3 Project Cost for Economic Feasibility Analysis (US\$ thousands)

EDCF											
Category	Foreign 3 rd Local Sub Total Korea Country		GOB	Total							
1. Total Project Cost	55,596	7,905	127,937	191,438	37,510	228,948					
2. Price Contingencies	4,437	633	10,245	15,315	-	15,315					
3.Tax & Duties	-	-	-	-	28,092	28,092					
Applied Cost	51,159	7,272	117,692	176,123	9,418	185,541					

7.1.4.1.2 Annual Disbursement Plan

The project is to be implemented over 104 months taking into account the period required for project preparation, consultant selection, detailed design, bidding support, contractor selection and construction supervision. Annual Disbursement plan during project implementation period is as follows.

Table 7-4 Annual Disbursement Plan (US\$ thousands)

	Category	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Total
	1. Construction Cost	-	-	7,780	38,898	38,898	38,898	31,117	-	-	155,591
	2. Commissioning & Training	-	-	-	-	-	-	1,251	-	-	1,251
Е	3. O&M Support	-	-	-	-	-	-	356	1,048	692	2,096
D C	4. Consulting Service	-	4,608	1,580	1,580	1,975	1,975	1,448	-	-	13,166
F	5. Contingencies	-	-	957	4,786	4,786	4,786	3,828	-	-	19,143
	6. EDCF service Charge	-	5	10	45	46	46	37	1	1	191
	Sub-Total	-	4,613	10,327	45,309	45,705	45,705	38,037	1,049	693	191,438
	Construction Cost (Household Connection)	-	-			2,605	1,955	1,955	-	-	6,515
	2. Tax & Duties	-	-	1,405	7,023	7,023	7,023	5,618	-	-	28,092
G O B	3. Land Acquisition & Resettlement Cost	-	500	-	-	-	-	-	-	-	500
Б	4. Project Management Cost	-	240	360	384	409	409	360	120	121	2,403
	Sub-Total	-	740	1,765	7,407	10,037	9,387	7,933	120	121	37,510
Total Project Cost		-	5,353	12,092	52,716	55,742	55,092	45,970	1,169	814	228,948
Disbursement Rate (%)		-	2.34	5.28	23.03	24.35	24.06	20.08	0.51	0.36	100.00
Cum	Cumulative Disbursement Rate (%)		2.34	7.62	30.65	54.99	79.06	99.13	99.65	100.00	-

7.1.4.2 O&M Cost Estimate

O&M cost of the sewerage system in this project is composed of electricity cost, chemical cost, labor cost, consumables & repair cost, replacement cost and administrative cost. Total O&M cost for 40 years is estimated at US\$ 210,756 thousands and Annual O&M cost is estimated at US\$ 5,269 thousands as below.

Table 7-5 O&M Cost Estimate (US\$)

Category	Annual	Total (40 years)
Electricity cost	2,201,741	88,069,640
Chemical cost	782,560	31,302,400
Labor cost	293,646	11,745,840
Consumables & Repair Cost	228,401	9,136,040
Replacement Cost (15year)	1,658,150	66,326,000
Administrative Cost	104,409	4,176,360
Total	5,268,907	210,756,280

7.1.5 Benefit Analysis

7.1.5.1 General

Benefit occurred in sewage project process is composed of direct benefit, which can easily be measured in monetary value, and indirect benefit, which is difficult to measure in monetary value, and benefits gained differs by beneficiaries.

Economic benefit is assumed to be reduction effect of cost by constructing sewage system, and additional direct/indirect effect. Economic effect is segmented into consumer benefit, area society and economic benefit, and public benefit. Since it is difficult to quantify monetary values in each item so, among effects and benefits of sewage project, items which are measurable and monetarily valuable at the same time are put in priority in selection.

7.1.5.2 Benefit Analysis Method

There are various methods of estimating the benefits of environmental policies that are not easy to measure in terms of currency. Benefit estimation based on economic theory is divided into market method, revealed preference method, and stated preference method. All three methods are methods of estimating the benefits of environmental improvement by analyzing the actions each individual takes to maximize their satisfaction. Therefore, it is different from the replacement cost method, which evaluates value through the cost of replacing the function performed by the environment with another artificial method.

In this feasibility study, analysis methods are appropriately applied to estimate non-monetary benefits.

Table 7-6 Benefit Analysis Method

Method	Analysis Model	Benefit
Opportunity method	Estimating the value of river water for non- environmental uses	All kinds of water quality improvement benefits
Alternate expense method	Estimation of engineering costs for water purification	All kinds of water quality improvement benefits
Market method	Damage function	Market benefits provided by industrial and agricultural water
	Production function	watei
	Cost function	
Revealed preference method	Recreation demand model	Recreational Value, Landscape Value
	Characteristic price model	Reduced risk of death, diseasePleasantness, Recreational Value, Landscape Value
	Avoidance behavior model	 Reduced risk of death, disease Pleasantness, Recreational Value, Landscape Value Ecosystem preservation, facility preservation
Stated preference method	Contingent valuation method	All kinds of water quality improvement benefits
metriou	Contingent rank method	
	Choice experiment	
Mixed method	Mix of revealed and stated method	All types of benefits to which the revealed preference method may be applied
Virtual Market Analysis	Experimental Auction	All kinds of water quality improvement benefits

^{*}Source: A study on revising and supplementing the standard guidelines for preliminary feasibility studies of water resources sector projects (2008, KDI)

7.1.5.3 Benefit Analysis

7.1.5.3.1 Benefit from Water Quality Improvement

Environmental goods such as water quality are not traded in the market, and have externalities or public goods characteristics, so even if the effect of water quality improvement is quantified, it is difficult to obtain objective indicators that can be used to derive economic value. It is usually evaluated using market prices, but since water quality is not traded in the market, it is difficult to judge it as an indicator that accurately reflects the value, even if there is no price.

If the environmental infrastructure of this sewerage system project is abandoned, sewage will flow into the lake or ponds in the urban area, causing eutrophication that worsens the water quality, creating sanitary problems and environmental pollution. As such, a sewer system is essential at this time, and given the extra cost required for water quality improvement.

In this feasibility study, the approach by production function and the alternate expense method proposed by KDI were applied in order to calculate the benefits of water quality improvement. Since there is no sewage treatment plant in Bangladesh, the unit cost is calculated considering the unit cost of a sewage treatment facility of a similar size in Korea.

Table 7-7 Unit Cost of STP in Korea

CTD	Capacity	Standard	Cost	Unit Cost
STP	(m³/d)	(1 million KRW)	(US\$ thousands)	(US\$ thousands/m³)
Namhang	125,000	292,293	222,784	1.78
Mansu	70,000	116,877	89,083	1.27
Eonyang	60,000	108,284	82,534	1.38
Water Quality Restoration Center (A)	50,000	111,626	85,081	1.70
Yeokgok	65,000	178,938	136,386	2.10
Jangdang	65,000	176,319	134,389	2.07
Poseung	58,000	154,619	117,850	2.03
Wolgojekopia	68,000	203,948	155,448	2.29
Gimpo	80,000	239,519	182,560	2.28
Sincheon	70,000	136,953	104,385	1.49
Gangreung	75,000	158,982	121,175	1.62
Chungju	75,000	205,512	156,640	2.09
Asan	72,000	212,624	162,061	2.25
Jeongeup	58,600	124,009	94,519	1.61
Yeosu	110,000	285,150	217,340	1.98
Gimcheon	80,000	261,301	199,162	2.49
Andong	54,000	134,592	102,585	1.90
Jinhae	60,000	175,435	133,715	2.23
Tongyeong	54,000	141,734	108,029	2.00
Jangyu	97,000	232,474	177,190	1.83
Hwamok	145,000	369,350	281,517	1.94
Yangsna	146,000	395,878	301,736	2.07
Average				1.93

^{*}Source: 2018 Sewage Treatment Facility Operation Results (Ministry of Environment in Korea)

Benefit from water quality improvement is estimated as the 20% of multiplying the average unit of STP to the capacity of STP in the project and benefit is assumed as constant after year 2040.

Table 7-8 Benefit from Water Quality Improvement (US\$ thousands)

Unit	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Benefit	15,649	16,200	16,752	17,303	17,855	18,406	19,008	19,609	20,211	20,813	21,414

7.1.5.3.2 Benefit from Living Standard Improvement

As a result of the improvement of living standard by this project, residents' leisure activities are expected to increase. As a way to evaluate the improvement effect, data from "Study on Quantification of Social Cost of Water Pollution – Focusing on Han River water system (Korea Environment Institute)," was used, which applied a Contingent Valuation Method and asked residents if they were willing to pay for the environmental improvement. Environmental value was quantified as a monetary value and leisure expenditure per capita was estimated at US\$ 3.63~4.17 per visit and on average the number of annual visits was 9.6 times; thus, the value in use was estimated at US\$ 34.9~40.0 annually.

In this project, leisure expenditure per capita is assumed as US\$ 3.90 in the consideration of the characteristic of the project area and benefit from living standard improvement is estimated as below.

Table 7-9 Benefit from Living Standard Improvement

Category	2030	2031	2032	2033	2034	2035
Sewage Service Population	284,342	294,361	304,379	314,398	324,416	334,435
Leisure Expenditure (US\$/person)	3.90	3.90	3.90	3.90	3.90	3.90
Benefit from Living Standard (US\$ thousands)	1,109	1,149	1,188	1,227	1,266	1,305
Category	2036	2037	2038	2039	2040	
Sewage Service Population	345,368	356,301	367,233	378,166	389,099	
Value of leisure use when visiting (Person/USD)	3.90	3.90	3.90	3.90	3.90	
Value of leisure use when visiting (US\$ thousands)	1,347	1,390	1,433	1,475	1,518	

Note) Benefit is assumed as constant after year 2040.

7.1.5.3.3 Benefit from Septic Tank Reduction

Household sewerage connection will be constructed by this project, so it will reduce the number of septic tank installation & maintenance in the project area. Septic tank reduction is considered as benefit and Installation cost of septic tank is assumed as US\$ 900/connection, maintenance cost is assumed as US\$ 30/connection. Benefit from septic tank reduction is estimated as below.

Table 7-10 Benefit from Septic Tank Reduction (US\$ thousands)

Category	2030	2031	2032	2033	2034	2035
Sewage Service Population	284,342	294,361	304,379	314,398	324,416	334,435
Number of Connection	10,155	10,513	10,871	11,229	11,586	11,944
Sewage Service Coverage (%)	60	61.0	61.0	62.0	62.0	63.0
Increase in number of Tanks installed	155	358	358	358	357	358
Septic Tank Maintenance Cost (US\$)	4,650	10,740	10,740	10,740	10,710	10,740
Septic Tank Installation Cost (US\$)	139,500	322,200	322,200	322,200	321,300	322,200
Amount Saved (US\$ thousands)	144	333	333	333	332	333
Category	2036	2037	2038	2039	2040	
	2036 345,368	2037 356,301	2038 367,233	2039 378,166	2040 389,099	
Category Sewage Service						
Category Sewage Service Population	345,368	356,301	367,233	378,166	389,099	
Category Sewage Service Population Number of Connection Sewage Service	345,368 12,335	356,301 12,725	367,233 13,115	378,166 13,506	389,099 13,896	
Category Sewage Service Population Number of Connection Sewage Service Coverage (%) Increase in number of	345,368 12,335 63.0	356,301 12,725 64.0	367,233 13,115 64.0	378,166 13,506 65.0	389,099 13,896 65.0	
Category Sewage Service Population Number of Connection Sewage Service Coverage (%) Increase in number of Tanks installed Septic Tank Maintenance	345,368 12,335 63.0 391	356,301 12,725 64.0 390	367,233 13,115 64.0 390	378,166 13,506 65.0 391	389,099 13,896 65.0 390	

Note) Benefit is assumed as constant after year 2040.

7.1.5.3.4 Benefit from Public Hygiene Improvement

This project will improve the public hygienic and sanitary condition of the Chattogram City, Hathajari Upazila and Raozan Upazila, so health expenditure of each household can be reduced and health expenditure per capita of Bangladesh in 2020 is US\$ 50.66 (World Bank), 20% of health expenditure is considered as the benefit from public hygiene improvement.

Table 7-11 Benefit from Public Hygiene Improvement (US\$ thousands)

Category	2030	2031	2032	2033	2034	2035
Sewage Service Population	284,342	294,361	304,379	314,398	324,416	334,435
Health Expenditure per capita (US\$/capita)	50.7	50.7	50.7	50.7	50.7	50.7
Benefit from Public Hygiene Improvement (US\$ thousands)	2,881	2,982	3,084	3,185	3,287	3,388
Category	2036	2037	2038	2039	2040	
Category Sewage Service Population	2036 345,368	2037 356,301	2038 367,233	2039 378,166	2040 389,099	
Sewage Service						

Note) Benefit is assumed as constant after year 2040.

7.1.5.3.5 Summary of Benefit

Summary of benefit is presented as below.

Table 7-12 Summary of Benefit (US\$ thousands)

	illiary of Boriont (Oot	Water Quality	Living Standard	Septic Tank	Public Hygiene
Year	Total	Improvement	Improvement	Reduction	Improvement
2030	19,783	15,649	1,109	144	2,881
2031	20,664	16,200	1,149	333	2,982
2032	21,357	16,752	1,188	333	3,084
2033	22,048	17,303	1,227	333	3,185
2034	22,740	17,855	1,266	332	3,287
2035	23,432	18,406	1,305	333	3,388
2036	24,218	19,008	1,347	364	3,499
2037	24,972	19,609	1,390	363	3,610
2038	25,728	20,211	1,433	363	3,721
2039	26,484	20,813	1,475	364	3,832
2040	27,237	21,414	1,518	363	3,942
2041	27,237	21,414	1,518	363	3,942
2042	27,237	21,414	1,518	363	3,942

Note) Benefit is assumed as constant after year 2040.

7.1.6 Economic Feasibility Analysis

7.1.6.1 Benefit/Cost Analysis (B/C Ratio)

As a result of the economic feasibility analysis B/C ratio is analyzed as 1.31 on discount rate of 12%, with total benefit US\$ 197,610 thousands, total cost US\$ 150,731 thousands, net present value US\$ 46,879 thousands.

Table 7-13 Result of Economic Feasibility Analysis (US\$ thousands)

Category	Benefit at Present Value	Cost at Present Value	Net Present Value	B/C Ratio
6%	377,103	209,190	167,913	1.80
7%	331,507	195,458	136,049	1.70
8%	294,225	183,838	110,387	1.60
9%	263,419	173,861	89,558	1.52
10%	237,706	165,181	72,525	1.44
11%	216,037	157,536	58,501	1.37
12%	197,610	150,731	46,879	1.31

7.1.6.2 Net Present Value (NPV)

Based on discount rate of 12%, total benefit was analyzed as US\$ 197,610 thousands, total cost was analyzed as US\$ 150,731 thousands and net present value was analyzed as US\$ 46,879 thousands.

7.1.6.3 Economic Internal Return Rate (EIRR)

EIRR is the discount rate when NPV becomes zero that means total benefit at present value equals total cost at present value. EIRR is estimated as 20.30% when cost/benefit is constant, which is greater than 12 %, and thus the project is considered to be economically feasible.

7.1.6.4 Sensitivity Analysis

In sensitivity analysis, B/C Ratio is analyzed as 1.02, NPV US\$ 3,170 thousands and EIRR 12.51% and it shows that this project is economically feasible even in the worst scenario of Case 4 with 20 % cost increase and 20 % benefit decrease.

Table 7-14 Sensitivity Analysis by Variation of Benefit/Cost

Case	Sensitivity	NPV (US\$ thousands)	B/C Ratio	IRR (%)
Base		46,879	1.31	20.30
Case 1	20% increase in costs	42,690	1.28	19.70
Case 2	20% decrease in benefits	7,359	1.05	13.14
Case 3	20% decrease in costs	51,072	1.35	20.88
Case 4	Combination of case 1 and 2	3,170	1.02	12.51

7.1.6.5 Analysis Result

As the result of feasibility analysis, this project is analyzed as economically feasible by the benefits that are expected from water quality improvement, living standard improvement, septic tank reduction and public hygiene improvement to the residents of the project by this project.

Table 7-15 Benefit/Cost Analysis (US\$ thousands)

14510 7 10	Ben	<u> </u>	inouounuo)	Co	ost			
Year	Benefit	Present	Project	O&M	Sub Total	Present	(a)-(c)	NPV
	(a)	Value (b)	Cost	Cost	(c)	Value (d)		(b)-(d)
2024			5,353		5,353	5,353	-5,353	-5,353
2025			9,921		9,921	8,858	-9,921	-8,858
2026			41,864		41,864	33,374	-41,864	-33,374
2027			44,890		44,890	31,952	-44,890	-31,952
2028			44,240		44,240	28,115	-44,240	-28,115
2029			37,290		37,290	21,159	-37,290	-21,159
2030	19,783	17,663	1,169	3,611	4,780	2,422	15,003	15,241
2031	20,664	16,473	814	3,611	4,425	2,002	16,239	14,471
2032	21,357	15,201		3,611	3,611	1,458	17,746	13,743
2033	22,048	14,012		3,611	3,611	1,302	18,437	12,710
2034	22,740	12,903		3,611	3,611	1,163	19,129	11,740
2035	23,432	11,871		3,611	3,611	1,038	19,821	10,833
2036	24,218	10,955		3,611	3,611	927	20,607	10,028
2037	24,972	10,086		3,611	3,611	828	21,361	9,258
2038	25,728	9,278		3,611	3,611	739	22,117	8,539
2039	26,484	8,527		3,611	3,611	660	22,873	7,867
2040	27,237	7,830		3,611	3,611	589	23,626	7,241
2041	27,237	6,991		3,611	3,611	526	23,626	6,465
2042	27,237	6,242		3,611	3,611	470	23,626	5,772
2043	27,237	5,573		3,611	3,611	419	23,626	5,154
2043	27,237	4,976		36,774	36,774	3,812	-9,537	1,164
2044	27,237	4,443		3,611	3,611	3,612	23,626	4,109
2045	27,237	3,967		3,611	3,611	298	23,626	3,669
2040	27,237	3,542		3,611	3,611	266	23,626	3,009
2047	27,237	3,162		3,611	3,611	238	23,626	2,924
2049	27,237					212		
2049		2,824		3,611	3,611		23,626	2,612
	27,237	2,521 2,251		3,611	3,611	190	23,626	2,331
2051	27,237			3,611	3,611	169	23,626	2,082
2052	27,237	2,010		3,611	3,611	151	23,626	1,859
2053	27,237	1,794		3,611	3,611	135	23,626	1,659
2054	27,237	1,602		3,611	3,611	121	23,626	1,481
2055	27,237	1,431		3,611	3,611	108	23,626	1,323
2056	27,237	1,277		3,611	3,611	96	23,626	1,181
2057	27,237	1,140		3,611	3,611	86	23,626	1,054
2058	27,237	1,018		3,611	3,611	77	23,626	941
2059	27,237	909		36,774	36,774	696	-9,537	213
2060	27,237	812		3,611	3,611	61	23,626	751
2061	27,237	725		3,611	3,611	55	23,626	670
2062	27,237	647		3,611	3,611	49	23,626	598
2063	27,237	578		3,611	3,611	43	23,626	535
2064	27,237	516		3,611	3,611	39	23,626	477
2065	27,237	461		3,611	3,611	35	23,626	426
2066	27,237	411		3,611	3,611	31	23,626	380
2067	27,237	367		3,611	3,611	28	23,626	339
2068	27,237	328		3,611	3,611	25	23,626	303
2069	27,237	293		3,611	3,611	22	23,626	271
Total	1,048,536	197,610	185,541	210,766	396,307	150,731	652,229	46,879
	Discou	nt Rate		12	.00	B/C I	Ratio	1.31

7.2 Financial Feasibility Analysis

7.2.1 General

This financial feasibility analysis is intended to identify whether the project will bring value and revenue to the project implementation agency, rather than all of society that is, to determine if return on investment is feasible and then check the feasibility by comparing the financing capacity of the project implementation agency with the financial status of the project and the effect on the financial status of the project implementation agency; essentially, financial feasibility analysis is based on the concept of profitability analysis.

The purpose of financial analysis is to analyse the feasibility of the investment using the estimated profit and loss and cash flow that is expected to be coming from the implementation of this project and is to present reference materials for investment decision making

7.2.2 Analysis Method

7.2.2.1 Net Present Value (NPV) Method

The net present value method (NPV) is a method of using the "Net present value (NPV) that can be obtained by discounting the cash flows generated from an investment project at an appropriate discount rate" for decision-making.

With regard to the investments with NPV > 0, the alternative with the largest NPV is selected among mutually exclusive investments while the investment proposals are evaluated in the order of the size of the NPV if the investment proposals are independent from each other.

Table 7-16 Characteristic of NPV Method

Categ	jory	Descriptions	
Calculation	Formula	$\begin{aligned} &NPV = \sum_{t=0}^n \frac{R_t}{(1+r)^t} - \sum_{t=0}^n \frac{C_t}{(1+r)^t} \\ &\bullet Rt: \; Revenues \; (Incomes) \; at \; time \; t \\ &\bullet Ct: \; Costs \; (or \; expenses) \; at \; time \; t \\ &\bullet r: \; Discount \; rate \; (interest rate) \\ &\bullet n: \; Duration \; (years) \; of \; the \; project \; (analysis period) \end{aligned}$	
Characteristic	Strength	 Considers the time value of money Considers profitability Can apply the sum of values principle 	
	Weakness	Difficult to determine an appropriate discount rate reflecting the characteristics of the business	

7.2.2.2 Internal Rate of Return (IRR) Method

The internal rate of return method calculates a discount rate (internal rate of return, IRR) that matches the present value of future cash inflows that are expected to be generated from the implementation of the investment plan and the present value of cash outflows as the investment costs (NPV = 0), and compares the obtained discount rate with the internal rate of return of an alternative investment or with the required rate of return of the business, wherein if the internal rate of return of the investment is greater than the internal rate of return of the alternative investment or the required rate of return of the business, the investment plan is evaluated as a possible investment. If there are multiple investment plans, the higher the internal rate of return is, the more economically feasible the investment is.

Table 7-17 Characteristic of IRR Method

Categ	jory	Descriptions
Calculation	Formula	$\begin{split} & \text{IRR} = \sum_{t=0}^{n} \frac{R_t}{(1+r)^t} = \sum_{t=0}^{n} \frac{C_t}{(1+r)^t} \\ & \cdot \text{Rt: Revenues (Incomes) at time t} \\ & \cdot \text{Ct: Costs (or expenses) at time t} \\ & \cdot \text{r: Discount rate (interest rate)} \\ & \cdot \text{n: Duration (years) of the project (analysis period)} \end{split}$
Characteristic	Strength	Considers time value of money and profitability Internal rate of return means the rate of return on investment
Characteristic	Weakness	IRR may not be calculated The reinvestment assumption is optimistic

7.2.2.3 Profitability Index method (PI)

The profitability index method is the value that is obtained by dividing the 'present value of the total revenue expected from the implementation of the project' by the 'present value of the total cost'. If PI≥1, it is evaluated as having financial feasibility.

Table 7-18 Characteristic of R/C

Categ	jory	Descriptions				
Calculation	Formula	$\begin{split} \text{PI} &= \sum_{t=0}^{n} \frac{R_t}{(1+r)^t} \; / \; \sum_{t=0}^{n} \frac{C_t}{(1+r)^t} \\ & \cdot \; \text{Rt: Revenues (Incomes) at time t} \\ & \cdot \; \text{Ct: Costs (or expenses) at time t} \\ & \cdot \; \text{r: Discount rate (interest rate)} \\ & \cdot \; \text{n: Duration (years) of the project (analysis period)} \end{split}$				
Strength Characteristic		 Can do a systematic and objective comparison Can calculate the revenues (incomes and costs expenses) of a long-term business at present value. 				
	Weakness	The output of the alternatives to be compared should be the same				

7.2.2.4 Procedures of Financial Analysis

As the method to evaluate the financial feasibility of a business, the internal rate of return (IRR) method, which is calculated based on the cash flows expected to be generated by the project in the future, was used in this analysis, a financial feasibility analysis related to the project was performed using the internal rate of return method.

- Estimation of operating cash flows
 - By analysing the investment cost and profit/loss structure of this project individually for each item, the operating cash flow that is expected from each operating activity is estimated on a yearly basis.
 - The operating income and expenses were calculated by reflecting the project period, project structure, and project method.
 - Major assumptions for financial analysis such as inflation, taxes, and annual expenditure plans were reviewed.
- Estimation of financial cash flows
 - After calculating the cash surplus/deficit by year in line with the operating cash flow of the project, and based on this, the cash flows reflecting annual borrowing and repayment of the funds required for this project were estimated.

- Annual investment and financing plans were reviewed
- Review of borrowing principal and interest repayment plan reflecting cash flow during operating period and analysis of debt repayment ratio were conducted.
- Calculation of financial expenses and corporate tax expenses
 - Interest expenses related to borrowing and corporate tax expenses to be paid in the future were calculated based on the operating cash flows and financial cash flows of this project.
 - Financial expenses are reflected in the internal rate of return (IRR) of the business.
 - The calculated financial expenses and corporate tax expenses are reflected in the estimated financial statements.
- Cash flow analysis and IRR calculation
 - Based on annual operating cash flows, financial cash flows, and corporate tax expenses that are
 calculated in this analysis, annual cash flows of each year have been estimated, and on the basis
 of the estimated cash flow, the net cash flow and IRR of the project were calculated.
 - The net present value (NPV) reflecting the target required rate of return was calculated.
 - Estimated financial statements for the analysis period were prepared reflecting cash flow analysis, financing plan, and principal and interest repayment plan including financial expenses.

7.2.3 Financial Feasibility Analysis

7.2.3.1 Basic Assumption

The basic assumption of the financial feasibility analysis is the same as for the economic feasibility analysis, but only the sewage fee is applied as the benefit instead of the economic benefit in economic feasibility, and price contingencies, taxes & duties, interest during construction considered for the cost as follows.

Table 7-19 Basic Assumption of Financial Feasibility Analysis

	Catego	у	Assum	otion	Remarks
Financina		EDCF	US\$ 19	1,439 thousands	 Construction cost Commissioning & training cost O&M support cost Consulting service cost Contingency EDCF service charge
Financing	GOB			7,538 thousands	 Taxes & duties, Land acquisition & resettlement cost, Project management cost, Interest during construction
		Total	US\$ 22	8,977 thousands	
Repayment		Repayment method	Uniform principa repayn		Grace period: 15 years Term of loan: 40 years
		Category	Wastewater Generation	Unit Cost	·
	Sewage Tariff	Domestic Wastewater	36,006 m³/d	0.24 USD/m ³	
Revenue		Non-Domestic Wastewater	4,606 m³/d	0.50 USD/m³	Based on year 2029 Inflation applied
	Color [Power Generation	Power Generation	Unit Cost	
	Solal F	ower Generation	206,955 kW/year	0.0952 USD/kWh	
		Electricity cost	US\$	3,176 thousands	Annual
		Chemical cost	US\$	1,129 thousands	Annual
Operating	O&M Cost	Labor cost	US	\$ 424 thousands	Annual
Cost		Consumables& repair cost	US	\$ 329 thousands	Annual
		Administrative cost	US	\$ 151 thousands	Annual
		Replacement cost	US\$ 3	3,163 thousands	Every 15 years
Inflation		Inflation	6.30	%	

The differences between an economic feasibility analysis and financial feasibility analysis can be summarized as follows.

Table 7-20 Comparison of Economic Feasibility Analysis & Financial Feasibility Analysis

		<u> </u>
Category	Economic Feasibility Analysis	Financial Feasibility Analysis
Benefit	Social cost reduction or social benefit	Revenue from sewage tariff & solar power generation
Cost	Initial investment cost, operating cost	Initial investment cost, operating cost
Discount Rate	12%	6.31%

7.2.3.2 Financial Feasibility Analysis

As a result of the financial feasibility analysis, it is analyzed that this project is not financially feasible to recover the investment cost with sewage tariff alone.

Table 7-21 Financial Analysis Result

Category	Result	Remarks
FIRR (%)	0.39%	Discount rate of 6.31%
FNPV (US\$ thousands)	(149,738)	

Annual cash flow to estimate profitability is as follows. Service charge and interest expenses are excluded from Construction Cost

Table 7-22 Annual Cash Flow (US\$ thousands)

Category	Total	2024	2025	2026	2027	2028	2029
Cash In	1,241,749	-	-	-	-	-	1,087
Sewage tariff	1,236,806	-	-	-	-	-	1,078
Solar system income	4,944	-	-	-	-	-	9
Cash Out	1,201,096	5,348	12,082	52,671	55,696	55,045	47,672
Construction cost	228,757	5,348	12,082	52,671	55,696	55,045	45,936
Operating cost	972,339	-	-	-	-	-	1,736
Net cash flow	40,653	(5,348)	(12,082)	(52,671)	(55,696)	(55,045)	(46,585)

Category	2030	2031	2032	2033	2034	2035	2036	2037
Cash In	3,466	3,813	4,191	4,600	5,045	5,527	6,065	6,650
Sewage tariff	3,436	3,781	4,157	4,564	5,006	5,486	6,022	6,604
Solar system income	30	32	34	36	39	41	44	46
Cash Out	6,705	6,697	6,256	6,651	7,070	7,515	7,988	8,492
Construction cost	1,168	812	-	-	-	-	-	-
Operating cost	5,537	5,886	6,256	6,651	7,070	7,515	7,988	8,492
Net cash flow	(3,239)	(2,884)	(2,066)	(2,051)	(2,025)	(1,988)	(1,923)	(1,842)

Category	2038	2039	2040	2041	2042	2043	2044	2045
Cash In	7,284	7,972	8,718	9,550	10,453	11,430	12,491	13,639
Sewage tariff	7,235	7,920	8,662	9,491	10,390	11,364	12,419	13,563
Solar system income	49	52	56	59	63	67	71	76
Cash Out	9,027	9,595	10,200	10,842	11,525	12,252	46,186	13,844
Construction cost	-	-	-	-	-	-	-	-
Operating cost	9,027	9,595	10,200	10,842	11,525	12,252	46,186	13,844
Net cash flow	(1,742)	(1,623)	(1,482)	(1,292)	(1,073)	(821)	(33,696)	(205)

Category	2046	2047	2048	2049	2050	2051	2052	2053
Cash In	14,928	16,325	17,838	19,478	21,254	23,216	25,341	27,643
Sewage tariff	14,847	16,239	17,748	19,382	21,151	23,107	25,225	27,520
Solar system income	80	85	91	96	103	109	116	123
Cash Out	14,716	15,643	16,629	17,676	18,790	19,974	21,232	22,570
Construction cost	-	-	-	-	-	-	-	-
Operating cost	14,716	15,643	16,629	17,676	18,790	19,974	21,232	22,570
Net cash flow	212	681	1,210	1,802	2,464	3,243	4,109	5,073

Category	2054	2055	2056	2057	2058	2059	2060	2061
Cash In	30,133	32,827	35,837	39,094	42,620	46,434	50,561	55,098
Sewage tariff	30,002	32,688	35,689	38,936	42,453	46,257	50,372	54,898
Solar system income	131	139	148	157	167	178	189	201
Cash Out	23,991	25,503	27,110	28,818	30,633	65,726	34,614	36,795
Construction cost	-	-	-	-	-	-	-	-
Operating cost	23,991	25,503	27,110	28,818	30,633	65,726	34,614	36,795
Net cash flow	6,141	7,325	8,727	10,276	11,987	(19,292)	15,947	18,303

Category	2062	2063	2064	2065	2066	2067	2068	2069
Cash In	60,868	65,314	71,052	77,254	84,044	91,382	99,310	71,917
Sewage tariff	60,655	65,087	70,810	76,998	83,771	91,092	99,002	71,699
Solar system income	213	227	241	256	273	290	308	218
Cash Out	39,113	41,577	44,197	46,981	49,941	53,087	56,432	39,991
Construction cost	-	-	-	-	-	-	-	-
Operating cost	39,113	41,577	44,197	46,981	49,941	53,087	56,432	39,991
Net cash flow	21,755	23,737	26,855	30,273	34,103	38,295	42,878	31,926

7.2.3.3 Sensitivity Analysis

7.2.3.3.1 Introduction

The calculations of cash inflows and cash outflows used in the financial feasibility assessment process contain many uncertainties. To mitigate these uncertainties, a sensitivity analysis is carried out. The analysis attempts to see how the changes affect the final outcome variable values by changing the values of various variables used in the feasibility study process in order to reflect anticipation against various unexpected changes in the future situation. For example, with respect to construction cost, operating cost, fee, facility capacity, discount rate, etc., the impact on investment cost or business performance can be identified as each variable changes.

In this feasibility study, sensitivity analysis was performed according to changes in project cost and fee, focusing on the cash inflow and outflow of the financial feasibility analysis.

7.2.3.3.2 Sensitivity Analysis

The result of sensitivity analysis for the change of investment cost and operating cost is as follows.

Table 7-22 Sensitivity Analysis for the Change of Investment Cost & Operating Cost

Category	-55%	-35%	-15%	BASE	20%
Total Investment cost (US\$ thousand)	103,056	148,835	194,631	228,977	274,773
Total operating cost (US\$ thousand)	474,032	655,235	836,437	972,339	1,153,542
Equity (US\$ thousand)	16,908	24,400	31,907	37,538	45,045
EDCF (US\$ thousand)	86,148	124,435	162,723	191,439	229,727
IRR	6.63%	4.11%	1.98%	0.39%	-1.99%
NPV	6,418	(50,365)	(107,150)	(149,738)	(206,523)
PI	1.05	0.74	0.58	0.49	0.41

The result of sensitivity analysis for the change of sewage tariff is as follows.

Table 7-23 Sensitivity Analysis for the Change of Sewage Tariff

Category	-20%	BASE	20%	70%	110%
Domestic	0.19 USD/m ³	0.24 USD/m ³	0.29 USD/m ³	0.41 USD/m ³	0.51 USD/m ³
Non-Domestic	0.40 USD/m ³	0.50 USD/m ³	0.60 USD/m ³	0.85 USD/m ³	1.05 USD/m ³
Equity (US\$ thousand)	37,538	37,538	37,538	37,538	37,538
EDCF (US\$ thousand)	191,439	191,439	191,439	191,439	191,439
IRR	-2.89%	0.39%	2.24%	5.03%	6.53%
NPV	(178,708)	(149,738)	(120,768)	(48,342)	9,599
PI	0.39	0.49	0.59	0.84	1.03

The result of sensitivity analysis for the annual increase of sewage tariff is as follows.

Table 7-24 Sensitivity Analysis of Annual Increase of Sewage Tariff

Category	BASE	2%	4%	6%	8%
Total Sewage Tariff (US\$ thousand)	1,236,806	2,271,037	4,223,407	7,912,081	14,871,659
IRR	0.39%	4.96%	7.95%	10.46%	12.75%
NPV	(149,738)	(57,591)	106,171	400,484	933,207
PI	0.49	0.80	1.36	2.36	4.16
Short Term loan occur	38 years	24 years	14 years	10 years	8 years

8 Environmental & Social Impact Assessment

8.1 General

The purpose of the environmental and social impact assessment is to contribute to sustainable development by identifying the negative effects of the EDCF loan support project on the environment and local residents and avoiding and minimizing them.

The environmental and social impact assessment is conducted to identify and analyse the predictable environmental and social negative impacts and risks caused by the project implementation in advance, to find ways to reduce them, and to avoid or minimize them. In addition, executes and measures, such as appropriate compensation, should be prepared to ensure that the project proceeds smoothly.

In this chapter, basic contents such as relevant laws, institutions, necessary procedures and processes, field conditions analysis, and expected environmental social impact and mitigation measures is reviewed, and full environmental social impact assessments will be conducted in the detailed design stage.

8.2 Related Laws and Policies

The government of Bangladesh has formulated various policies, laws and regulations to protect and preserve the natural environment.

Table 8-1 Related Laws and Policies

Policy	Description		
National Environment Policy 1992	Established the National Environmental Policy (NEP) in 1992 to plan the way for the country's sustainable development. It presents a basic framework for environmental action, along with a broad set of sectoral action guidelines. NEP 2018 contains policy outlines for 24 sectors, including agriculture, water, wildlife and chemicals. It provides guidelines for the planning process of any development project.		
National Environment Action Plan (NEMAP) 1995	The action plan recommends safe drinking water supply as a main goal in the health and hygiene sector.		
Environment Conservation Act 1995 and subsequent amendments in 2000, 2002 and 2010	Laws for Environmental Conservation, Improvement of Environmental Standards, and Control and Mitigation of Environmental Pollution. The details of the environmental permitting procedure are laid down in ECR 1997.		
Environment Conservation Rules 1997 and subsequent amendments in 2002 and 2003	 According to the 1997 Environmental Conservation Regulations, project components are classified into one of four categories (Red, Orange-A, Orange-B, Green). According to ECR 1997, sewage systems including fecal sludge treatment plants, sewage treatment plants and pumping stations fall into the "Red" category. An environmental permit should be obtained from the DoE for that category. 		
Environment Court Act 2010	If a project adversely affects a region or an individual, the affected party may seek remedies in the Environmental Court in accordance with the procedures set out in the Environmental Court Act 2010.		

Policy	Description
National Land-use Policy 2001	Stated to take measures to prevent land pollution and to ensure minimum use of land for the construction of governmental and non-governmental buildings applicable to the proposed project.
National Water Policy 1999	Require each water resource development project or rehabilitation program to consider environmental protection, restoration and improvement measures. The National Environmental Management Action Plan and National Water Management Plan comply with a formal environmental impact assessment process when required by government.
National Agricultural Policy 1999	One of the specific goals of the National Agricultural Policy is to take necessary measures not only for 'environmentally friendly and sustainable agriculture' but also for environmental protection by increasing the use of organic fertilizers and strengthening integrated pest control programs.
Bangladesh Wildlife (Conservation and Security) Act 2012	Under the jurisdiction of the Ministry of Forestry, it protects and preserves the wildlife of Bangladesh.
National Safe Drinking Water Supply and Sanitation Policy 1998	The National Safe Drinking Water Supply and Sanitation Policy provides a basic framework for ensuring public health quality improvement and an improved environment, with a broad set of sectoral measures.
National 3R (Reduce, Reuse, Recycle) Strategy for Waste Management 2010	The national 3R goal for waste management is to completely treat waste from open-air landfills, rivers, floodplains, etc. through mandatory source separation of waste by 2015, create a recycling market, and provide waste recycling incentives. Its main goal is to provide unified guidance to all stakeholders, explaining how and by which national 3R goals will be achieved.
Bangladesh Standards and Guidelines for Sludge Management 2015	Bangladesh Sludge Management Standards and Guidelines were published in 2015 to ensure protection of human health and environment from the negative impacts of sludge management. Sludge management responsibility lies with sludge producers as described in standards and guidance documents.
Institutional and Regulatory Framework for Faecal Sludge Management 2017	The main objective of the FSM framework is to promote appropriate FSM across the country.
Noise Control Act 2006	Provide acceptable noise limits based on land use category.
Bangladesh National Building Code (BNBC)	Regulate the technical details of building construction and maintain standards.
Bangladesh Labour Law, 2006, Act, 2013 And Rules, 2015	Including rules on worker registration, misconduct rules, income and benefits, and health and safety. Children under the age of 18 cannot be employed during the project period, and this law should comply with Bangladesh Labor Law.
Bangladesh Climate Change Strategy and Action Plan 2009	Comprehensive Strategy to Address Climate Change Challenges in Bangladesh. The Climate Change Strategy and Action Plan (BCCSAP) is expanded based on the National Adaptation Action Plan (NAPA). BCCSAP has 44 programs proposed under the six themes.
National Disaster Management Act 2012	Establishing a framework for disaster management in a comprehensive way.

^{*}Source: Bangladesh Government Rules & Regulation books

8.3 Environmental & Social Impact Procedure

8.3.1 Environmental Impact Assessment Procedure

The Environmental Impact Assessment (EIA) process in Bangladesh proceeds in three stages to optimize the resources required for the survey.

- Preliminary Screening
- Initial Environmental Examination (IEE)
- Environmental Impact Assessment (EIA)

The preliminary review determines whether the EIA process should be applied to the development project and determines whether a preliminary environmental investigation (IEE) or an environmental impact assessment (EIA).

Sewerage project is categorized as "Red" requiring implementation of IEE and EIA according to EIA guidelines of the DOE. EIA procedure is described as below.

Table 8-2 Environmental Impact Assessment Procedure

Stage	Orange B	Red		
Feasibility Study	• IEE	• IEE		
Detailed design	Create EMP, update IEE and obtain environmental approval	Obtain site permit and prepare EIA and finalize Range of Task (TOR) for approval by DOE EIA update and ECC acquisition with site- specific EMP		
Development Project Proposal (DPP)	EIA Approval and Inclusion of EIA Recommenda	EIA Approval and Inclusion of EIA Recommendations in DPP		
Project approval and Construction	Establishment of construction stage Environmen	Establishment of construction stage Environmental Management Plan (EMP)		
Operation	mplementation of the monitoring plan established by the Environmental Management Plan (EMP) n the operational Phase			

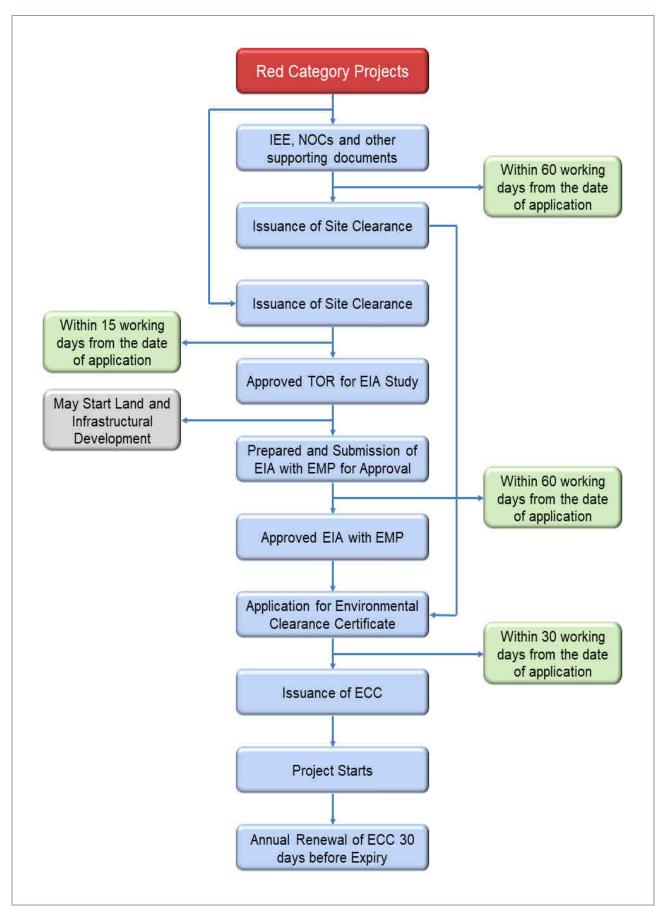


Figure 8-1 Red Project Environmental Assessment Procedure

8.3.2 Social Impact Assessment Process

8.3.2.1 Land Acquisition Process

The Acquisition and Requisition of Immovable Property Act 2017 (ARIPA) is the principal legislation governing eminent domain for land acquisition and requisition in Bangladesh. ARIPA 2017, detailed the land acquisition process from section 4 to section 19 and land requisition process from section 20 to section 28. According to ARIPA 2017, compensation to be paid for affected land, structures, trees, crops and any other damages caused by such acquisition.

Under the ARIPA 2017, The Deputy Commissioner (DC) determines the value of the acquired assets as at the date of issuing the notice of acquisition under section 4 (1). The DCs there after enhance the assessed value by 200% and another 100% premium for loss of standing crops, structures and income due to compulsory nature of the acquisition. The compensation such determined is called the Cash Compensation under Law (CCL). If the land acquired has standing crops cultivated by a tenant (Bargadar) under a legally constituted written agreement, the law requires that compensation money be paid in cash to the tenants as per the agreement. ARIPA 2017 under section 4 (13) permits the acquisition of the community properties if it is for a public purpose provided that project for which the land is acquired provides for similar types of assets in some other appropriate place or reconstruct the community properties.

Table 8-3 Land Acquisition Process Under ARIPA (2017)

Relevant Section	Steps in the Process	Responsibility
Section 4 (1)	Publication of preliminary notice of acquisition of property for a public purpose	Deputy Commissioner
Section 4 (3) (1) (i)	Prior to the publication of section 4(1) notice; Identify the present status of the land, structures and trees through videography, still pictures or appropriate technology.	Deputy Commissioner
Section 4 (3) (1) (ii)	After the publication of the section 4(1) notice a joint verification should be conducted with potentially affected households and relevant organizations.	Deputy Commissioner
Section 4 (7)	 After publication of preliminary notice under the section 4(1), if any household has changed the status of the land for beneficial purposes, changed status will not be added to the joint verification notice. 	Deputy Commissioner
Section 4 (8)	If the affected person is not happy with the joint verification assessment, he/she can complain to Deputy Commissioner within 7 days of issuing sec 4(1) notice.	Affected Person
Section 4 (9)	Hearing by Deputy Commissioner within 15 working days after receiving the complaints. In case of government priority projects, hearing will be within 10 working days.	Deputy Commissioner
Section 5 (1)	Objections to acquisition by interested parties, within 15 days of the issue of section 4 (1) Notice	Affected Person
Section 5 (2)	Deputy Commissioner submits hearing report within 30 working days after the date of the sec 5(1) notice. In the case of government priority projects, it will be within 15 working days.	Deputy Commissioner
Section 5 (3)	DC submits his report to the (i) Government (for properties that exceed 16.50 acres; (ii) Divisional Commissioner for properties that do not exceed 50 standard bighas. Deputy Commissioner makes the final decision If no objections were raised within 30 days of inquiry. In case of government priority project, it will be 15 Days	Deputy Commissioner

Relevant Section	Steps in the Process	Responsibility
Section 6 (1) (1)	 Government makes the final decision on acquisition within 60 working days After receiving report from the Deputy Commissioner under sec 5(3) notice. 	Government
Section 6 (1) (2)	Divisional Commissioner makes the decision within 15 days or with reasons within 30 days since the submission of the report by Deputy Commissioner under sec 5(3) notice.	Divisional Commissioner
Section 7 (1)	Publication of the Notice of final decision to acquire the property and notifying the interested parties to submit their claims for compensation	Deputy Commissioner
Section 7 (2)	Interested parties submit their interests in the property and claims for compensation within 15 working days (in case of priority project 7 days).	Affected Person
Section 7 (3)	Individual notices have to be served to all interested persons including the shareholders within 15 days of issuing Section 7(1) notice	Deputy Commissioner
Section 8 (1)	Deputy Commissioner makes a valuation of the property to be acquired as at the date of issuing Section 4 Notice; determine the compensation; and apportionment of compensation among parties interested.	Deputy Commissioner
Section 8 (3)	DC informs the award of compensation to the interested parties and sends the estimate of compensation to the requiring agency/person within 7 days of making the compensation decision	Deputy Commissioner
Section 8 (4)	The requiring agency/person deposits the estimated award of compensation with the Deputy Commissioner within 120 days of receiving the estimate.	Deputy Commissioner
Section 9 (1)	During valuation of assets, Deputy Commissioner will consider the following: (i) Average market price of land of the same category in the last 12 months; (ii) Impact on existing crops and trees; (iii) Impact on other remaining adjacent properties; (iv) Impact on properties and income; and (v) Relocation cost for businesses, residential dwellings etc.	Deputy Commissioner
Section 9 (2)	Additional 200% compensation on current mouza rate is added to the estimated value. If private organizations acquire, added compensation will be 300%.	Deputy Commissioner
Section 9 (3)	Additional 100% compensation on top of the current market price for impacts mentioned under sec 9(1) and (2)	Deputy Commissioner
Section 9 (4)	Appropriate action should be taken for relocation on top of the above-mentioned subsections.	
Section 10 (2)	If an entitled person does not consent to receive compensation, or if there is no competent person to receive compensation, or in the case of any dispute with the title to receive compensation, Deputy Commissioner deposits the compensation amount in a deposit account in the Public Account of the Republic and Deputy Commissioner acquires the land. But if any person complains about the ownership of the land, with appeal, he/she will be able to collect the amount from Deputy Commissioner. There is no fixed time for this.	Deputy Commissioner
Section 11 (1)	Deputy Commissioner awards the compensation to entitled parties within 60 days of receiving the deposit from the requiring agency/person.	Deputy Commissioner
Section 12	When the property acquired contains, standing crops cultivated by bargadar (shareholders), such portion of the compensation will be determined by the Deputy Commissioner and will be paid to the bargadar in cash.	Deputy Commissioner

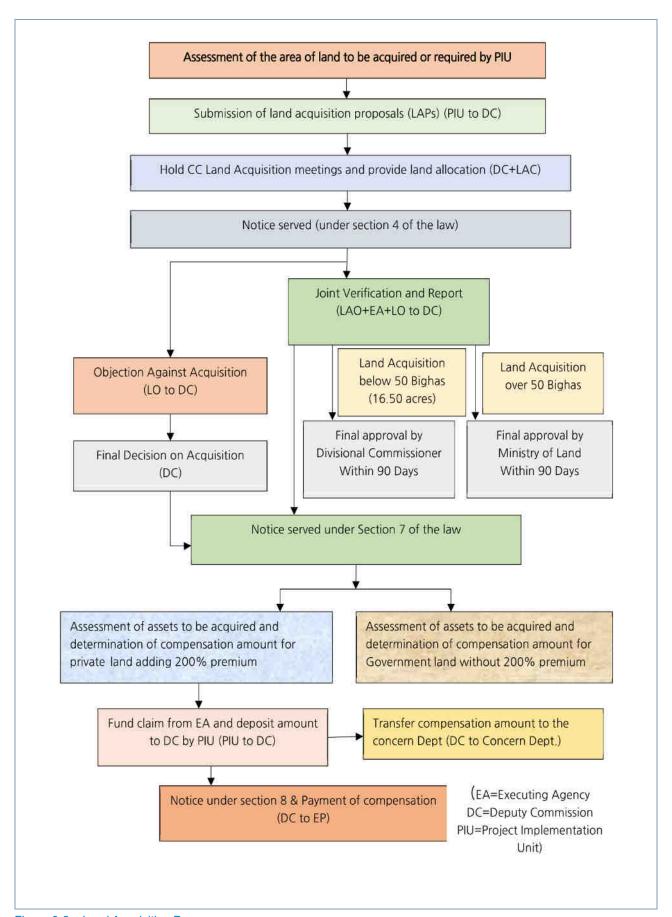


Figure 8-2 Land Acquisition Process

8.3.2.2 Resettlement Process

8.3.2.2.1 General

The smooth progress of resettlement is a prerequisite determining whether the project can be completed on schedule. Any lag in resettlement will delay the construction period and increase the construction cost. Therefore, the first thing is to compare and demonstrate the resettlement plan in details so as to ensure the minimum resettlement requirements; the second thing is to communicate with the clients to do well in resettlement assessment and resettlement action plan, if any assessment on resettlement is required.

8.3.2.2.2 Methods for Ensuring the Minimum Resettlement Requirements

Detailed investigation on building and land conditions: It is required to investigate in details the local building conditions, collect land information for classification research, and start design on this basis. Resettlement and land acquisition shall be taken as important criteria for selecting the project schemes.

Detailed demonstration of project site selection: Site selection is most difficult for designers, as it cannot be realized by purely technical optimization, but more importantly it is influenced by numerous non-technical factors such as the Detailed Area Plan of Chattogram, natural and cultural landscape protection, policies of local government, etc. Hence, for the purpose of ensuring the minimum resettlement or resettlement requirements, it is requisite to do profound research by combining other influential factors, conduct repeated comparison and demonstration, and finally determine the reasonable site selection schemes, under the precondition of complying with Bangladesh design codes and standards.

8.3.2.2.3 Assessment on Compensation for Resettlement

In accordance with relevant Bangladesh laws, regulations and policies concerning the compensation for resettlement, the principles, methods and procedures include:

- Principles: firstly, to determine the compensation amount according to the assessment value on the real estate market; secondly, to determine the compensation amount in reference to such factors as the location, usage, building structure, area, newness rate, storey and decoration.
- Methods and procedures: The chief officer of Chattogram will determine compensation under law (CCL, Cash Compensation under Law) that includes 50% premium for land on the basis of transacted deeds for last twelve months from the date of serving notice under section 3 as per Acquisition and Requisition of Immovable Property Ordinance-1982 and subsequent amendment in 1994. Value (RV, Replacement Value) of the affected properties would be assessed through collection of current market price by interviewing different categories of people from the affected area and considering transacted price recorded price etc.

8.3.2.2.4 Resettlement Action Plan

The Consultant will provide assistance to the client (CWASA) to plan and implement the resettlement action plan, help with resettlement of the households affected by the project and the communities affected by land acquisition. The resettlement plan shall follow the following steps:

Conduct Census survey and inventory of assets: For preparation of the Resettlement Action Plan the Consultant will conduct census survey of the final alignment covering all affected persons. An inventory survey of the affected assets will also be taken place for preparation of the database and resettlement action plan. The census and inventory survey will cover number of affected households with demographic and socio-economic information, quantity and quality of the affected properties, relocation options, etc.

- Disclosure and Public Consultation (DPC): Goals and objectives of the project should be disclosed to the affected people and other stakeholders through focus group discussion and public consultation meetings. Cut-off dates will be declared in the consultation meetings i.e., notice for legal owners of the property and date of commencement of census or any designated date fixed by the CWASA for the squatters/unauthorized occupants in the polder areas.
- Consultation: Consultation of resettlement and rehabilitation issues with all level stakeholders and gather feedback on potential risks and probable mitigation measures. Encourage all level stakeholders to participate in the consultation by receiving views from representatives from different groups including directly and indirectly affected households, land owners, structure owners, squatters, fishermen, local traders, women and vulnerable groups etc.
- Updating of Resettlement Plan: The resettlement plan should be updated according to changes in the planning and detailed design of facility components.

Table 8-4 Resettlement Process

Table 8-4 Resettlement Process			
Process	Responsibility		
Establishment of Resettlement Units in PMU	PMU		
Appointment of PD, CRO & ROs			
Engagement of Detailed Design Consultant	PMU		
Fielding of International Resettlement Specialist	PMU		
Fielding of Domestic Resettlement Specialist	PMU		
Organizing Resettlement Training Workshop	PMU		
Social Assessment and Updating of Core RAP	PMU / Resettlement Specialist /		
Preparation of Non-core RAP	Design Consultant		
Submission of RAP to Funding Agency for Approval	PMU / Funding Agency		
Hiring of NGOs	PMU		
Public Consultation and Disclosure of RP	PMU / Design Consultant / NGO		
Formation of GRC, RAC, PVAT	PMU / NGO / Resettlement Specialist		
Coordination with District Administration of Land Acquisition	PMU / NGO / Resettlement Specialist		
Declaration of Cut-Off Date	District Commissioner / PMU		
Submission of Land Acquisition Proposals to	District Commissioner / PMU / NGO /		
District Commissioner	Resettlement Specialist		
Compensation Award and Payment of Compensation	District Commissioner / PMU / NGO /		
	Resettlement Specialist		
Payment of Replacement Value Allowance and Resettlement Assistance to Titled and	District Commissioner / PMU / NGO /		
Non-Title Holders	Resettlement Specialist		
Relocation of APs to Resettlement Sites and Assisting in Self Relocation	District Commissioner / PMU / NGO /		
	Resettlement Specialist		
Taking Possession of Acquired Land and Structures	District Commissioner		
Handing over the Acquired Land to Contractors for Construction	PMU		
Notify the Date of Commencement of Construction to APs	PMU		
Internal Monitoring of Overall RP Implementation	PMU / NGO / Resettlement Specialist		
External Monitoring and Evaluation (M&E)	PMU		

8.4 Classification of Environmental and Social Impacts

8.4.1 Bangladesh Categorization

According to the Bangladesh Environmental Conservation Regulations (1997), the criteria for classifying impact types classified into four levels of colour are as follows, and this project corresponds to the "Red" grade according to the classification of the Bangladesh Environmental Conservation Regulations.

As specified in Clause 7 of the ECR, the necessary documents attached with an application for Environmental Clearance Certificate (ECC) by the red category are as follows.

- Feasibility study report: report on the feasibility of the industrial unit or project (applicable only for proposed industrial unit or project).
- IEE report/EIA report: IEE which is linked with business and industry, Environmental impact evaluation prepared on the basis of terms of reference or DOE (Department of Environment), are all previously approved by the Department of Environment, along with the preparation of the Environmental Impact Assessment report, the Layout Plan (showing location of Effluent Treatment Plant), Process Flow Diagram, design and time schedule of the Effluent Treatment Plant of the unit or project).
- EMP report: report on the Environmental Management Plan (EMP) for the industrial unit or project, and also the Process Flow Diagram, Layout Plan (showing location of Effluent Treatment Plant), design and information about the effectiveness of the Effluent Treatment Plant of the unit or project (these are applicable only for an existing industrial unit or project).
- NOC issued by the local authorities: no objection certificate of the local authority.
- Pollution minimization plan: emergency plan relating adverse environmental impact and plan for mitigation of the effect of pollution.
- Outline of relocation, rehabilitation plan (where applicable).

Table 8-5 Classification of industries and projects based on environmental impact

Category	Industries and Projects
Green	 Manufacturing: artificial leather goods, TV, radio, watches & clocks, telephones, toys, sport goods, musical instruments and etc Assembling: motorcycles, bicycles and etc
Orange A	Livestock: dairy farm, poultry (small scale) and etc Manufacturing: leather goods, plastic & rubber goods, agricultural machinery and equipment and etc Service: restaurant, cinema hall and etc
Orange B	 Livestock: dairy farm, poultry (mid and large scale) and etc Manufacturing: PVC, glass, aluminium, garment and sweater, edible oil, animal feed and etc. Service: hotel and etc Project: local road, bridge (length below 100m) and etc
Red	 Manufacturing: fertilizer, paper and pulp, cement, power plant, iron and steel, ship and etc Service: hospital and etc Project: national road, bridge (length 100m and above), water treatment plant, Sewage Treatment Plant, sewer of water / sewerage / power and gas and etc

^{*}Source: Environmental Conservation Rules (1997)

8.4.2 EDCF Categorization

Under the EDCF Safeguard Policy (2020), the Export-Import Bank of Korea categorizes the proposed project into four categories: type, location, sensitivity, scale, and the magnitude and nature of potential impacts and risks. Projects in Category, which are high due to their potential impact and complexity in a broad-sense environment, should include research and mitigation plans for performance.

This project is assessed as "Category B+" according to the classification of EDCF environmental and social impact analysis risk.

Table 8-6 Category of EDCF Environmental and Social Impact Analysis Risk

	able 8-6 Category of EDCF Environmental and Social Impact Analysis Risk					
Categorization	Description					
Category A (High Risk)	 A proposed project is classified as category A if it is likely to have significant adverse environmental and social impacts and high risks that are irreversible, diverse, or unprecedented. These impacts may affect an area larger than the sites or facilities. Category A, in principle, includes projects in sensitive sectors or located in or near sensitive areas such as those composed of large-scale dam construction which involves a large number of involuntary resettlement, biodegradable risks, and/or negative impacts and risks to indigenous peoples. PEA will be required to conduct full-scale ESIA (draft or final) and KEXIM ensures ESIA execution by the PEA. 					
Category B+ (Substantial Risk)	 A proposed project is classified as category B+ if it is likely to have substantial adverse environmental and social impacts and risks that are less adverse than those of category A projects. These impacts and risks can be managed and predicted in a manner consistent with the EDCF Safeguard Policy. ESIA (draft, final, framework, strategy, plan, and/or environmental impact assessment) is required. 					
Category B (Moderate Risk)	 A proposed project is classified as category B if its potential adverse environmental and social impacts are less adverse than those of category B+ projects. These impacts are site-specific, few if any of them are irreversible, and in most cases mitigation measures can be designed more readily than for category B+ projects. KEXIM ensures execution of IESE by the PEA. IESE (draft, final, framework, strategy, plan, and/or environmental impact assessment) is required. 					
Category C (Low Risk)	 A proposed project is classified as category C if it is likely to have minimal or no adverse environmental and social impacts. SIA and IESE are not required for category C projects. 					

^{*}Source: EDCF Safeguard Policy (2020, KEXIM)

8.5 Stakeholder Consultations

The Consultant conducted stakeholder consultations on environmental & social aspect. Stakeholders are knowledge of the project at the National and local authorities, communities or non-governmental organizations. At the stakeholder consultations, potential impacts such as benefits of the project, roles and responsibilities of the project owner, land use patterns, affected population, land purchase, resettlement, water supply, wastewater treatment, etc. were discussed together. The opinions and influences derived are as follows.

Table 8-7 Stakeholder Consultations on Environmental Aspects

Environmental Issues	Opinion	Suggestions
Treated Effluent Standard	 Environmental regulation (ECR' 97) is high compare to proposed draft standard (draft revised ECR'2017). Additional Cost is involved if we follow the new draft standard as it is not gazette. As we are in feasibility stage, the stakeholder asked for a reply on which option we will follow. 	 Deputy Director, DoE suggested that the project team shall follow new draft standard as the draft standard will be gazette within short of time. Revised DoE discharge standard is issued on March, 2023 and it is incorporated in the feasibility study.
Air Pollution	 The Environmental Specialist, DDC informed the proposed location of treated effluent discharge point is Madani khal which is connected with Halda River. Now it is public interest, as Halda River is declared Bangabandhu Fisheries Heritage. At present, untreated sewerage waste is discharge directly to Halda River. The Fatehabad Catchmen-03 of Sewerage STP project will treat the untreated sewerage waste. 	 Deputy Director, DoE answered, with the declaration of Bangabandhu Fisheries Heritage, some restriction has been application there like: Nobody can discharge any garbage into the Halda River and the river can be used only for research work. Impact on treated effluent discharge on Halda River is reviewed in the Feasibility Study and it will be confirmed during the detailed design stage by EIA.

Table 8-8 Stakeholder Consultation on Social Aspects

Category	Description			
Positive Impact	 According to the FGD participants, the implementation of the project will Improve the sewerage management capacity of CWASA. Strengthen sewerage infrastructure to avoid intrusion of sewage into water supply sewer and help to prevent pollution of drinking water. Improvement of health, sanitation, environment, and further with quality of life by improving on-site sanitation and decentralized system. If standard sewerage system is introduced local people would like to get their houses connected with the new sewerage line and will pay tariff at the reasonable rate to the authority concern. With the installation of new sewerage lines, there would not be any difficulty in passing refuse carried off by sewers and draining out the stagnant polluted water on the road. There would not be any possibility of submerging the road on account of rain. Pollution of environmental will come down and waterborne diseases go down. No extra money will need to be spent on cleaning the household sewers. 			
Negative Impact	 During construction work, some shops, vendors may be affected temporarily. Some of them will face trouble to get alternative space for business. Business activities will have to be closed. Income of the traders will be reduced remarkably. People will face enormous difficulties during their movements for different purposes and transportation of goods. If the installation/construction works of new sewerage line is prolonged, it will create serious difficulties for the local people as well as the visitors. 			

8.6 Environmental & Social Impact Assessment

Initial environmental and social impact assessment is conducted to identify and analyse the predictable environmental and social negative impacts and risks caused by the project implementation in advance. It contributes to sustainable development by identifying the negative effects of the EDCF loan support project on the environment and local residents and avoiding and minimizing them.

8.6.1 Environmental Impact Assessment

In Phase 1 as a target year 2040, daily average wastewater generation of sewage treatment plant is 55,574 m³/d is only 0.23% of 25,920,000 m³/d which is the lowest flow rate of Halda river and Treated effluent is discharged to Madari Khal and final receiving water body is Halda River.

Treated effluent discharge point of STP in Madari Khal is about 7.6km away from the intake facility of Modunaghat WTP and about 11.5km away from the intake facility of Mohara WTP, so the impact of effluent will be negligible to the intake of WTP. For instance, 4.0km of standard distance from the intake of WTP is considered when designating a water source protection area in Korea.

Treated effluent will satisfy the standard Sewerage discharge of DOE, so it will contribute to improve the water quality of river and to preserve the ecosystem of river. It is planned to obtain the environmental license through the environmental impact assessment during the project implementation.

8.6.2 Social Impact Assessment

Proposed site of sewage treatment plant has been owned by CWASA since 1960s, so the land acquisition is not required. However, there are illegal residents in the proposed site even though there no schools and mosques, resettlement action plan should be prepared by CWASA during the project implementation.

There is no requirement for the buffer zone from STP to the resident area in the environmental regulation of Bangladesh, odour control facility will be constructed in the STP and odour mitigation measures shall be analyzed in the ESIA during the project implementation.

Table 8-9 Land Use of Sewage Treatment Plant Site

Table 0 0 Land 000 of Sowage Treatment Flank Sko						
No.	Category	Total	A1	A2	A3	Remarks
1	Common House (Tin-roofed)	49	9	6	34	
2	Common House (Brick building)	11	2	5	4	
3	Cattle Farm	8	-	3	5	
4	Two-story Building	2	-	2	-	
5	Three-story Building	2	-	-	2	
6	One-story Building	1	1	-		
7	CWASA Storage	1	-	1	-	
8	School	1	1	-	-	
9	Toilet	1	1	-	-	
10	Religious Facility	2	1	1	-	
11	Cemetery	4	3	1	-	
12	Pond	25	-	-	-	
13	Khal	1	-	-	-	
14	Dirt Road	3	-	-	-	
15	Paved Road	4	-	-	-	
16	BFS Road	1	-	-	-	
17	RCC Road	2	-	-	-	
18	RHD Road	1	-	-	-	
19	Railroad	1	-	-	-	
20	Forest	-	-	-	-	
21	Bridge	2	-	-	-	
22	Culvert	-	-	-	-	
23	Street Lamp	26	-	-	-	
24	Tree	5000 +	-	-	-	
25	Rice Field	210	-	-	-	

Figure 8-3 Proposed Site of Sewage Treatment Plant

9 Project Feasibility Analysis

9.1 Policy & Strategic Aspects

The government of Bangladesh is working to increase the supply of water resources and water supply as mentioned in Perspective Plan of Bangladesh 2021-2041, as well as to expand the supply of sewage. As for the sewage system, it is planned to supply 100% sanitary toilets and install Sewage treatment plant in urban areas by 2041.

Table 9-1 Target of Perspective Plan (%)

	Description	Standard (2018)	Target (2041)
Ratio of urban population	Ratio of urban population to total population		80
	Tap water connection	40	100
Urban Household	Sanitary Toilet	42	100
	Water closet connections	N/A	100
	Tap water connection	0	50
Rural Household	Sanitary Toilet	0	50
	Water closet connections	0	100
Poverty Rate		24	Under 3%
Percentage of population living in slums		55	0
Percentage of cities with Sewage treatment plant		N/A	100
Environmental Performa	nce Index International Ranking	Bottom 5%	Top 30%

Chattogram's CCC area corresponds to an urban area, but the Fatehabad area, which is the sewage treatment area of this project, was found to include part of the city's outer area and slums. In the Sanitation Master Plan, 2017, the sewage basic plan of the Chattogram Water Supply Improvement and Sanitation Project (CWSISP), it is planned to set up six treatment areas and build Sewage treatment plant.

The site of this project is Catchment-3, and the location of the sewage treatment facility is planned to be located in the north of the CCC area, and the current status is as follows.

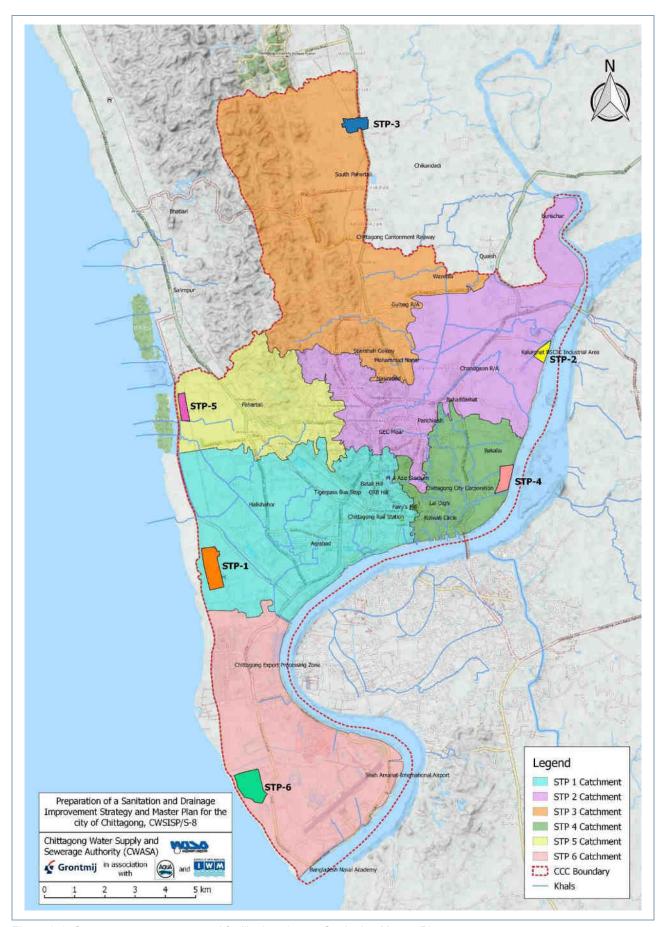


Figure 9-1 Sewage treatment area and facility location on Sanitation Master Plan

9.2 Legal Aspect

9.2.1 Laws & Policies

The government of Bangladesh classified and organized ratings and approval management agencies by level to establish a national water supply & sanitation strategy. The ratings are classified into four major categories: related laws, policies and rules, national strategies, plans and guidelines, and the contents are as follows.

Table 9-2 Level of Law & Policy

No.	Category	Description	Approval
1	Laws	Environment Conservation Act, 1995	Parliament
2	Policies and Rules	Environment Conservation Rules, 1997 National Policy for Safe Water Supply & Sanitation 1998	Ministry
3	National Strategies	National Strategy for Water Supply and Sanitation 2014	Department
4	Plans and Guidelines	Eighth Five Year Plan 2020-2025 Perspective Plan of Bangladesh 2021-2041 Sanitation Master Plan 2017	Agency

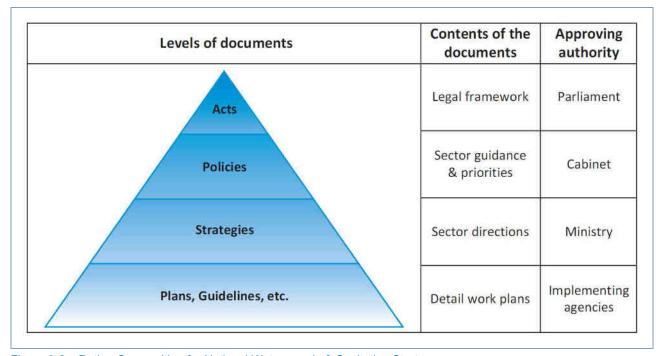


Figure 9-2 Rating Composition for National Water supply & Sanitation Strategy

9.2.1.1 Environment Conservation Act, 1995

The Environment Conservation Act of 1995, and all subsequent amendments, is currently the main legislative document relating to environmental protection in Bangladesh. The main objectives of the Act are improvement of the environmental health and environment standard, and control and mitigation of pollution of the environment. DoE is empowered to enforce the Act, and the main strategies of the Act can be summarized as follows.

- Identification of ecologically critical areas, and restriction on the operations which can be carried out in such areas.
- Regulation in respect to vehicular emissions.
- Environmental clearance.
- Regulation imposed on industries and other development activities, incl. discharge permits.
- Production of standards for quality of air, water and soil for different areas/purposes.
- Production of standard limits for discharge and emission of wastes.
- Formulation and declaration of environmental guidelines.

9.2.1.2 Environment Conservation Rules

The Bangladesh Department of Environment (DoE) established the standard Sewerage discharge in 1997 and revised the standard in March 2023. Bangladesh mainly have regulated the removal of SS and BOD, COD contained in the wastewater and the discharge standards have been strengthened recently to remove T-N and T-P to prevent eutrophication in the public water body.

In the Catchment-1 project, which is under construction, a target effluent water quality was set up as stronger than the effluent standard. In this feasibility study, target effluent quality is set up in consultation with PMU as follows.

Table 9-3 Target Effluent Quality

Catanami	Unit	Standard Sewage Discharge		Target Effluent Quality	
Category	Onit	1997	2023	Catchment 1	Catchment 3
Temperature	°C	30	30	24	24
рН	-	-	6-9	6-9	6-9
BOD	mg/L	40	30	20	20
COD	mg/L	-	125	100	100
SS	mg/L	100	100	30	30
Oil and Grease	mg/L	-	10	-	-
NO ₃ -N	mg/L	250	50	40 as T-N	40 as T-N
PO ₄ -P	mg/L	35	15	10 as T-P	10 as T-P
Coliform	CFU/100mL	1000	1000	1000	1000

^{*}Source: Standard Sewerage discharge in the Environment Conservation Rules (1997&2023, DOE)

9.2.1.3 National Policy for Safe Water Supply & Sanitation 1998

This policy is established to ensure that all people have access to safe sanitation services through the provision of clean water at an affordable cost and the promotion of public health development. The goals to achieve this are as follows:

- Facilitating access of all citizens to basic level of services in water supply and sanitation.
- Bringing about behavioural changes regarding use of water and sanitation.
- Reducing incidence of water-borne diseases.
- Building capacity in local governments and communities to be effective with problems.
- Promoting sustainable water and sanitation services.
- Ensuring proper storage, management and use of surface water and preventing its contamination.
- Taking necessary measures for storage and use of rain water.
- Smooth drainage in urban areas during rainfall.

To achieve the overall goal, the short-term plan was established as follows.

- Increasing the present coverage of safe drinking water in rural areas by lowering the average number of users per tube-well from the present 105 to 50 in the near future.
- Ensuring the installation of one sanitary latrine in each household in the rural areas and improving public health standard through cultivating the habit of proper use of sanitary latrines.
- Making safe drinking water available to each household in the urban areas.
- Ensuring sanitary latrine within easy access of every urban household through technology options ranging from pit latrines to water borne sewerage.

9.2.1.4 National Strategy for Water Supply and Sanitation 2014

This strategy is established to promote better health through safe and sustainable water supply, sanitation and sanitation services for all. The following guidelines are in principle.

- Regard water supply and sanitation as human rights.
- Consider water as a public good that has economic and social value.
- Ensure drinking water security through integrated water resource management.
- Setting up programs in an integrated way for all water source development
- Recognize importance of gender in all WASH activities.
- Ensure equity in services by giving priority to arsenic affected areas, hard-to-reach areas, waterstressed areas and vulnerable people.
- Protect human health and water supply and sanitation facilities from the adverse impact of natural and manmade disasters and climate change.
- Recycle the potential resources from solid and liquid wastes.
- Promote technical innovations to address social needs.
- Promote transparency and accountability at all stages of service delivery.
- Undertake a gradual approach to improve the quality and service levels.
- Promote enhanced private sector participation.

9.2.1.5 Eighth Five Year Plan 2020-2025

The sustainable development goals and strategies related to environmental climate change and forest management established in the 8th Five-Year Plan are identical to the long-term goals presented in the Perspective Plan of Bangladesh 2021-2041. The main goals of environmental management according to this plan are as follows.

Table 9-4 Goals for Environmental Management (2020-2025)

Description	Standard (2018)	Target (2025)
Percentage of cities with Sewage treatment plant	N/A	50
Water Quality Standards Compliance Rate in Urban Areas	Bottom 5%	Top 50%
Environmental performance index international rankings	Bottom 5%	Top 50%

9.2.1.6 Perspective Plan of Bangladesh 2021-2041

In this plan, it is planned to supply 100% sanitary toilets and install Sewage treatment plant in urban areas by 2041.

Table 9-5 Goals for Environmental Management (%)

	Description	Standard (2018)	Target (2041)
Ratio of urban population	Ratio of urban population to total population		80
	Tap water connection	40	100
Urban Household	Sanitary Toilet	42	100
	Water closet connections	N/A	100
	Tap water connection	0	50
Rural Household	Sanitary Toilet	0	50
	Water closet connections	0	100
Poverty Rate		24	Under 3%
Percentage of population	living in slums	55	0
Percentage of cities with	Sewage treatment plant	N/A	100
Environmental Performan	nce Index International Ranking	Bottom 5%	Top 30%

9.2.1.7 Sanitation Master Plan 2017

The project target for this feasibility study set in Sanitation Master Plan, 2017, the basic plan for sewerage of the Chattogram water supply improvement and sanitation project (CWSISP), is planned to include seven wards as Catchment-3. The location of the sewage treatment facility is to the north of the project site, and the current status is as follows.

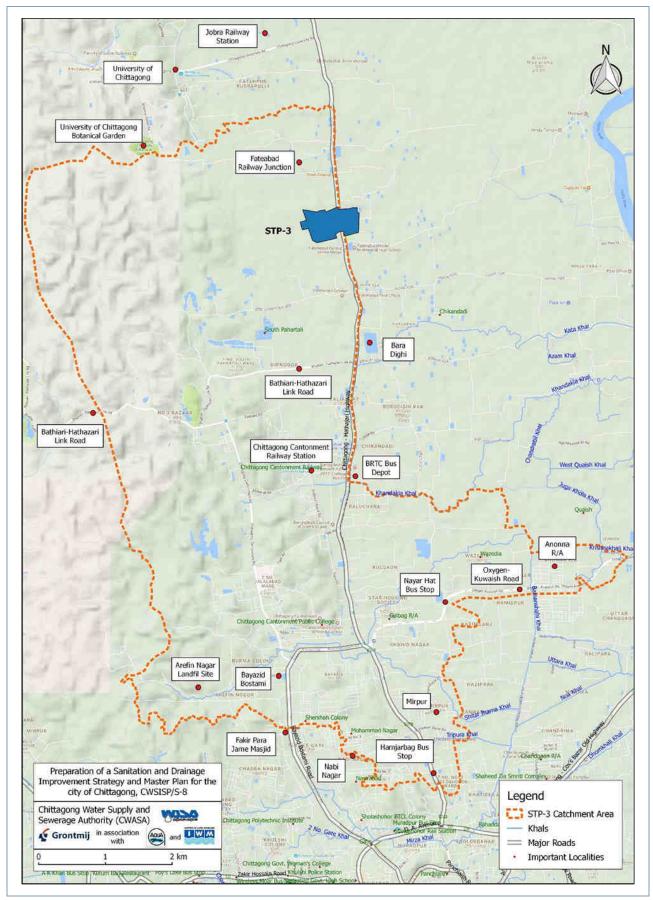


Figure 9-3 Location of Sewage Treatment Plant

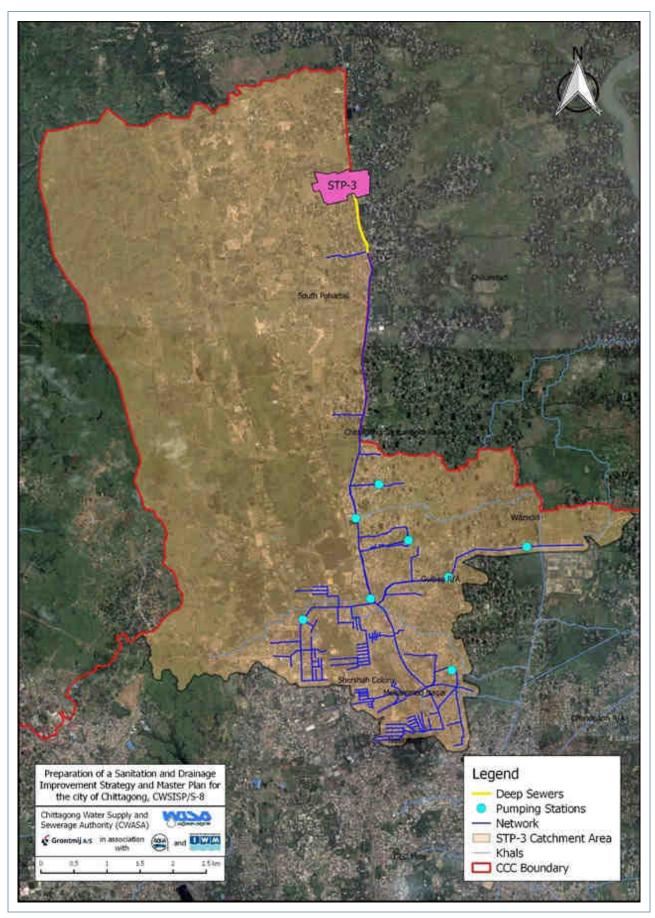


Figure 9-4 Main Trunk Plan

9.2.2 Legal Feasibility

9.2.2.1 Legal and Policy Compliance

In this feasibility study, it is planned to improve the water quality of the discharge river by setting it to be more stringent than the effluent water quality standards set by laws and policies. The water quality standards set this time are as follows.

Table 9-6 Quality of treated water and discharged water (mg/L)

Catagory	Di	ischarge Water Quali	Target Discharge	Remarks		
Category	1997	2017	2023	Target Discharge	Remarks	
COD	-	125	125	100	Reinforcement	
BOD	40	30	30	20	Reinforcement	
SS	100	100	100	30	Reinforcement	
TKN	-	-	50	25	Reinforcement	
T-P	-	-	15	4	Reinforcement	
Nitrate	250	250	-	-		
Phosphate	35	35	-	-		
Total Coliform	1,000 MPN/100mL	1,000 MPN/100mL	1,000 MPN/100mL	1,000 MPN/100mL		

9.2.2.2 Consistency with Relevant Plan

In this feasibility study, the sewage treatment area and facility location set in the sewerage master plan, which is the upper-level plan, is applied identically. It is planned to construct a sewage treatment facility with a facility capacity of $60,000\text{m}^3\text{/d}$ to treat the average planned sewage volume per day in the first stage (by 2040), and expanded to $90,000\text{m}^3\text{/d}$ in the second stage and $120,000\text{m}^3\text{/d}$ in the third stage. Finally, a reasonable expansion plan is established by the final target year 2070.

9.2.2.3 Legal Feasibility

In this feasibility study, a detailed plan is established according to the laws, policies and regulations established by the government of Bangladesh, and the plan set in the upper-level plan. In line with the environment-related goals established in the 8th Five-Year Plan and Perspective Plan of Bangladesh 2021-2041, 100% penetration rate of Sewage treatment plant in urban areas is planned to be achieved.

It is judged to be legally appropriate by complying with relevant laws and planning according to policies and regulations, and upper-level plans.

9.3 Technical Aspects

9.3.1 Feasibility of Project Area

9.3.1.1 Project Area

The sewage treatment area corresponds to Catchment-3 established in the Chattogram sewerage maintenance master plan, and has an area of 42.70 km², and includes seven wards out of 41 wards belonging to the Chattogram CCC in the administrative district.

It is planned that 100% of the South Pahartali area would be incorporated into the sewage service area and the remaining areas would be partially incorporated, and the status of the sewage service area is as follows.

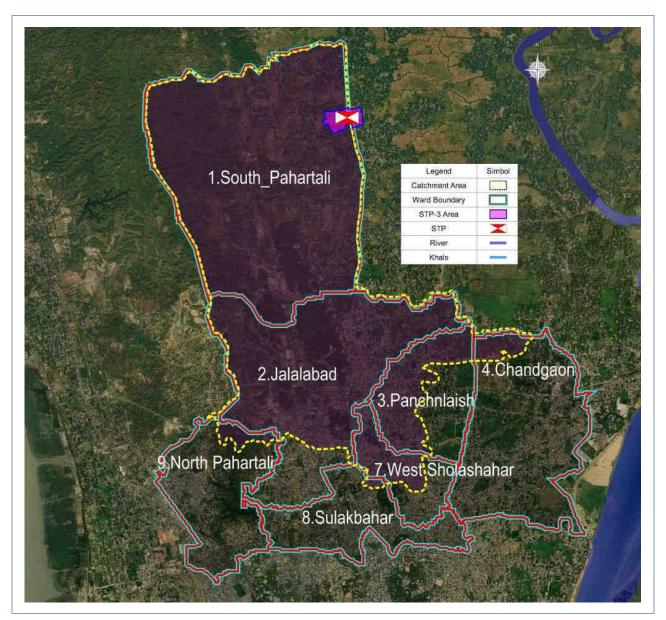


Figure 9-5 Sewage Service Area

Currently five sewerage projects including this project are on-going in Chattogram City under CWASA. Although six sewage treatment plants were planned in the Sanitation & Drainage Improvement Strategy and Master Plan (CWSISP), number of STP is adjusted during the project implementation of each project due to the difficulty of the land acquisition of sewage treatment plant sites of Catchment-4, Catchment-5 & Catchment-6 as below.

- STP of Catchment-5 & Catchment-6 is planned to be integrated in the site of STP of Cathcment-1 (PESSCM-1).
- STP of Catchment-2 & Catchment-4 is planned to be integrated in the site of STP of Cathcment-2.

Table 9-7 On-going Sewerage Projects

Category	Location of STP	Capacity of STP (Final/Phase 1, m³/d)	Fund Source	Current Progress
Catchment-1 (PESSCM-1)		100,000	GOB	Under Construction
Catchment-5	Halishahar	100,000 (50,000)	AFD	EOI
Catchment-6		100,000	PPP	Feasibility Study On-going
Catchment-2&4	Kalurghat	300,000 (60,000)	JICA	Feasibility Study On-going
Catchment-3	Fatehabad	120,000 (60,000)	EDCF	Feasibility Study Completed

9.3.1.2 Appropriateness of Project Area

Three sewage treatment plant are scheduled to be built in six catchments within the Chattogram. Catchment 1 is under construction with funding from Bangladesh, and feasibility studies are underway for the rest of the region. The Catchment-3 area, the site of this project, is planned to install a sewage treatment plant of $60,000 \, \mathrm{m}^3 / \mathrm{d}$, a sanitary sewer of 93.4km, and seven sewage pumping stations. The sewer supply rate is planned to be improved by 0.5% every year in consideration of the willingness of local residents to pay and the progress of the drainage facility connection construction. So, starting from 0% in 2022, it is planned to achieve 60% in 2030, and 80% in 2070, the final target year.

Feasibility studies are underway for five regions except Catchment 1, and the 8th Five-Year Plan and Perspective Plan of Bangladesh 2021-2041 of Bangladesh aim to achieve 100% penetration of Sewage treatment plant in urban areas by 2041. Therefore, it is expected that the sewer supply rate will gradually increase. Currently, untreated sewage flows into the city's rainwater drainage channels and the Halda River, which has water sources, causing environmental pollution, water-borne diseases, and spoiling the beauty of the city. Therefore, it is necessary to improve the quality of raw water, urban Living Standard, and public health hygiene according to the supply of sewage systems. In addition, it is possible to promote employment of local residents and revitalize the economy according to the supply of sewage system. Considering these environmental, sanitary, and economical aspects, it is judged appropriate to select Fatehabad as the target area for this project.

9.3.2 Feasibility of Sewerage System

9.3.2.1 Phase Plan

In this feasibility study, it is planned to expand the sewage treatment facility step by step, taking into consideration the expansion of the urban area according to the development of the project area. In the first phase (2040), a sewage treatment facility with a facility capacity of 60,000m³/d is constructed to treat the average daily planned sewage volume and secure a spare capacity of 4,426m³/d. An expansion plan is established to secure 158m³/d of spare capacity in 2070, the final target year, by expanding 30,000m³/d in the 2nd phase and 30,000m³/d in the 3rd phase.

- Phase 1: Construction of STP with a capacity of 60,000m³/d
- Phase 2: Expansion of STP with a capacity of 30,000m³/d
- Phase 3: Expansion of STP with a capacity of 30,000m³/d

Table 9-8 Phase Plan of Sewage Treatment Plant (m³/d)

Category		2030	Phase 1 (2040)		Phase 3 (2070)
	r Generation Average)	40,612	55,574	83,876	119,842
STP	Daily Avg.	60,000	60,000	90,000	120,000
Capacity	Daily Max.	75,000	75,000	115,000	150,000
Expansio	n Capacity	-	-	30,000	30,000
Bal	ance	19,388	4,426	6,124	158

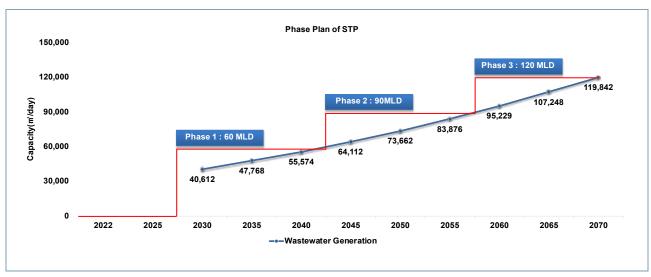


Figure 9-6 Phase Plan of Sewage Treatment Plant

9.3.2.2 Feasibility of Cost Estimate

The estimated construction cost of this project is reviewed as follows, based on the construction cost of a sewerage project of a similar scale in Korea, sewerage project in progress at Chattogram.

9.3.2.2.1 Sewage Treatment Plant

The sewage treatment method applied in this plan is A2O. The estimated cost of STP-3 (Q=60,000m³/d) is US\$ 57,861 thousands. The construction cost of the Sewage Treatment Plant of similar size in Korea is as follows, but the construction method is different and there are more mechanical and electrical equipment. Therefore, the unit cost is US\$ 1.25~2.45 thousands/m³ and average is US\$ 1.90 thousands/m³, showing a large variation in construction cost.

Table 9-9 Unit Cost of STP in Korea

Table 9-9 Utili	Cost of STP III	Rolea				
STP	Capacity (m³/d) (Daily Max.)	Operation Start	Project Cost (Million KRW)	Inflation Correction Rate	Correction Project Cost (US\$ thousands)	Unit Cost (US\$ thousands/m³)
Namhang	125,000	2008	221,590	1.32	219,238	1.75
Mansu	70,000	2005	80,746	1.45	87,665	1.25
Eonyang	60,000	2004	72,804	1.49	81,220	1.35
Water Quality Restoration Center	50,000	2012	95,153	1.17	83,727	1.67
Yeokgok	65,000	2006	126,393	1.42	134,215	2.06
Jangdang	65,000	1998	100,278	1.76	132,250	2.03
Poseung	58,000	2000	90,654	1.71	115,974	2.00
Wolgojekopia	68,000	2017	184,890	1.10	152,974	2.25
Gimpo	80,000	2003	155,457	1.54	179,654	2.25
Sincheon	70,000	2006	96,737	1.42	102,724	1.47
Gangreung	75,000	1998	90,418	1.76	119,247	1.59
Chungju	75,000	1995	99,207	2.07	154,147	2.06
Asan	72,000	1996	107,694	1.97	159,482	2.22
Jeongeup	58,600	1999	71,101	1.74	93,015	1.59
Yeosu	110,000	2005	197,000	1.45	213,881	1.94
Gimcheon	80,000	1999	149,818	1.74	195,992	2.45
Andong	54,000	1999	77,169	1.74	100,953	1.87
Jinhae	60,000	2001	107,041	1.64	131,587	2.19
Tongyeong	54,000	1994	65,485	2.16	106,309	1.97
Jangyu	97,000	2004	156,302	1.49	174,370	1.80
Hwamok	145,000	2000	216,552	1.71	277,036	1.91
Yangsna	146,000	1998	225,148	1.76	296,934	2.03

Table 9-10 Comparison of Unit Cost of STP with Sewerage Projects of Chattogram

N.	CTD	Capacity	/ (m³/d)	CAPEX	Unit Cost
No.	STP	Daily Max.	Daily Avg.	(US\$ thousands)	(US\$ thousands/m³) (Daily Max.)
1	STP-1	125,000	100,000	82,847	0.66
2	STP-2&4	75,000	60,000	104,546	1.39
3	STP-5	62,500	50,000	35,627	0.57
4	STP-3	75,000	60,000	57,681	0.77

The unit price of US\$ 0.77 thousands/m³ of STP-3 is reviewed as about 31-62% of the level of similar sewage treatment plants in Korea, and about 57-135% of the level of sewage treatment plants in progress in Chattogram. It is considered that unit cost of STP-3 is similar to the unit cost of on-going sewerage projects in Chattogram.

When compared to the sewage treatment plant in progress in the Chattogram, it is found to be 117 to 135% higher than STP-1 and STP-5. In the case of STP-1 and STP-5, the integrated sewage treatment facility is planned to be installed in the vicinity of the Bay of Bengal step by step, and earthworks and disinfection facilities are excluded, so the construction cost is judged to be less than this project. Compared to STP-2&4, it is reviewed at 55.6% level.

In the case of Sewage treatment plant, since the construction cost is influenced by the characteristics of the treatment method, water quality standards, topographical conditions, and surrounding conditions, there is a large variation in construction cost by region and construction method. The construction cost is reflected in appropriate equipment and materials according to the sewage treatment method, and the level of construction cost is judged to be appropriately calculated when comparing and reviewing Chattogram's ongoing project and the status of construction costs of a similar scale in Korea.

9.3.2.2.2 Sanitary Sewer

In the case of sanitary sewer construction cost, the HDPE pipe is applied for D300mm or less, and GRP pipe is applied for D400mm or more. Unit cost of this project is compared with the unit cost of Korea schedules of rates from MOE and it is also compared with unit cost of other sewerage projects of Chattogram as below.

Table 9-11 Comparison of Unit Cost of Sanitary Sewer

Diameter	Korea Standard Unit Cost (US\$/m, MOE) (A)				Ratio (%) (A/D)
200	611	119	266	161	26.4
300	658	599	402	248	37.7
400	749	-	712	622	83.0
500	827	-	730	648	78.4
600	928	3,376	751	672	72.4
700	1,025	-	780	728	71.0

When comparing the unit cost of this project to the unit cost of Korea schedule of rates, it is analyzed that the D300mm or less pipe diameter was 26.4~37.7% and D400mm or larger pipe diameter was 71.0~83.0%.

In the case of HDPE, it is a product that can be produced locally, and it is judged appropriate when considering the local economic level. In the case of GRP pipe, domestic material cost is applied. In the case of Korea, the larger the pipe diameter, the smaller the unit price range due to the use of construction equipment, whereas in the case of the local case, the cost of manpower installation is high. Considering localization, it is judged to be calculated at an appropriate level.

9.3.3 Appropriateness of Project Implementation Period

The project implementation period of this project is planned for a total of 92 months, including 4 months for consultant selection, 12 months for detailed design, 4 months for contractor selection and 48 months for construction & construction supervision, 6 months for commissioning & training, and 24 months for O&M support after construction completion. Considering the local construction conditions such as sewage treatment plant 60,000m³/d, 58.3km of sanitary sewers, distinct seasonal characteristics of dry and wet seasons, and the complexity of construction of house connections, the construction period is 48 months and the total project implementation period is 92 months. the project implementation period is considered appropriate.

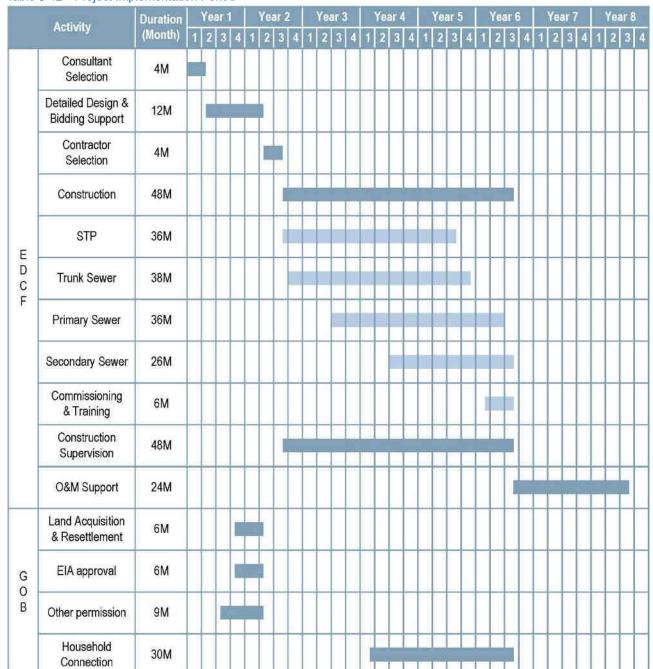


Table 9-12 Project Implementation Period

Note) Household connection will be constructed sequentially by GOB according to the construction of sanitary sewer.

9.4 Project Monitoring Framework (PMF)

EDCF sets up the logical framework as the project monitoring framework (PMF) and it outlines the impact, outcomes and outputs of the EDCF projects and it is the basic project management tool for development results by including monitoring indicators and indicator definitions, targets, and primary beneficiary information. The purpose of the logical framework is to clarify the logical relationship between the purpose of the EDCF project and the support provided to achieve the objective, and to present precisely defined quantitative goals as indicators so that stakeholders can clearly understand the contents of the project.

EDCF uses the logical framework to assist the borrowing country in specifying project goals & project scopes with output mid- to long-term effect by establishing logical feasibility that contributes to the upper development goals of the borrowing country's government. Therefore, logical framework is an important task for all stakeholders to clearly understand and share the contents of the project during the entire stages of the project from F/S, mission for loan approval, consulting services, procurement, project completion evaluation, and expost evaluation.

Table 9-13 Project Monitoring Framework

Category	Indicators	Base	Targets	Source	Assumptions/ Risks
Impact Improvement of water quality in river and	Improvement of water quality in river	Organics in river (BOD, COD, SS) (6 months before construction completion)	Improvement of water quality in river (BOD, COD, SS) (5 years after construction completion)	Bangladesh Environmental statistics and CWASA O&M Report	<a> < Assumption >
Reduction of vulnerability to climate change	Greenhouse gas emission reduction	52,409 t CO²eq/year (2022)	27,642 t CO ² eq/year (5 years after construction completion)	CWASA O&M Report	and technology
	Reduction of vulnerable population to climate change	N/A (2022)	Sewage service population 334,435 (5 years after construction completion)	CWASA O&M Report	
Outcomes Improvement of living	Sewage service coverage	N/A (2022)	60.0% (2 years after construction completion)	CWASA O&M Report	< Assumption> Normal operation of the facility by the input of professional operating personnel Completion of household connection construction < Risk> Delayed response to facility failure Delay of household connection construction
standard and sanitation of inhabitants in the project	Daily wastewater treatment of wastewater treatment plant	N/A (2022)	40,612m³/d (2 years after construction completion)	CWASA O&M Report	
area	Compliance with effluent discharge standard	Influent Quality BOD: 322mg/L COD: 644mg/L SS: 386mg/L T-N: 76mg/L T-P: 15mg/L	BOD: 20mg/L COD: 100mg/L SS: 30mg/L T-N: 40mg/L T-P: 10mg/L (After construction completion)	CWASA O&M Report	
	Number of STP operation suspension related to climate disasters	N/A (2022)	Zero (2 years after construction completion)	CWASA O&M Report	
Outputs Construction of sewerage system with climate resilience	Construction of sewerage system with climate resilience	N/A (2022)	• STP: Q=60,000m3/day • Sanitary Sewer: L=58.3km • HHC: • 10,000nos. • FSTP: Q=100m3/day	Project Completion Report	

Monitoring

- Consultant for design, bid preparation and construction supervision will be selected within 4 months after L/A.
- Contractor will be selected within 16 months after selection of the Consultant
- Construction will be completed within 48 months (including 6 months of training and commissioning)

Project Objective

- To increase sewage service coverage through construction of sewerage system
- To improve living standard and sanitation of inhabitants in the project area
- To improve river water quality and restore the ecosystem by sewage treatment

Primary Beneficiary

• People of Chattogram City, Hathazari Upazila and Raozan who inhabits in the project area

Definition and Management of Indicator			
Indicator	Definition	Source	Managed by
Water quality in river	Water quality measurement of organics such as BOD, COD, SS in rivers	Environmental statistics and CWASA O&M Report	CWASA
Greenhouse gas emission reduction	Calculation method of 2006 IPCC G/L	CWASA O&M Report	CWASA
Reduction of vulnerable population to climate change	Sewage service population	CWASA O&M Report	CWASA
Sewage service coverage	Sewage service population / Total population	CWASA O&M Report	CWASA
Daily sewage treatment of sewage treatment plant	Average daily sewage treatment quantity	CWASA O&M Report	CWASA
Compliance with effluent discharge standard	Standard Sewerage discharge in environment conservation rules (2023, DOE)	CWASA O&M Report	CWASA
Number of STP operation suspension related to climate disasters	∑ (Number of STP operation of suspensions related climate change)	CWASA O&M Report	CWASA
Sewerage system with climate resilience	Infrastructure to convey and treat wastewater from its point of origin to a point of treatment and discharge	Project Completion Report	Consultant & Contractor
Sewage treatment plant	Facility to remove contaminants from wastewater to produce an effluent that is suitable for discharge to the public water body	Project Completion Report	Consultant & Contractor

