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Abstract

Nuclear reactor core configuration search is a standard optimization procedure. To avoid the time consuming reactor core characteristic
evaluation for different core configurations we have investigated the training of artificial neural network (ANN) with a simple core
neutronics simulator model. To find an optimum structure of the network is a matter of trial and error. Further the computationally
expensive neutronics calculation steps makes it more difficult. It is found that ANN can learn the assumed property of our simple model.
This simulator model has been demonstrated as a screening tool to find the optimum ANN structure for the core neutronics simulation.
Besides, the optimum structure of the neural network is expected to predict the characteristics of a reactor core of equivalent dimension of

that of the simulator model. Future direction of work has been identified.
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1. Introduction

For reactor core design, optimum core configuration search
is an important issue. In-core fuel management of a nuclear
reactor includes multiple steps of fuel reshuffling and
calculating neutronics parameters recurrently. Optimum
core configuration evaluation and selection is a standard
optimization procedure, but the neutronics calculation is
time consuming. Usually for core management study simple
neutronics models are used [1]. Now-a-days with the
increase of computer performance detailed model computer
codes are in practice [2]. The application of artificial neural
network for nuclear core characterization is already
reported [3-7]; here we have investigated the training of an
artificial neural network (ANN) with a simple core
neutronics simulator model.

2. Materials and Methods

To grasp the inherent feature of in-core fuel management
and to perform preliminary selection of core configurations
we attempted artificial intelligence technique. Particularly,
we concentrated on neural network approach. Here we
investigated the feasibility of training an artificial neural
network for neutronics simulation of a nuclear reactor core.
Again it is a daunting task to train the network with
hundreds of neutronics simulation data. So for the
feasibility study of training a neural network for core
neutronics simulation we have prepared a simple model
coded in QBASIC. We consider this simple model as toy
model. Power peaking factor and reactivity of the core is
considered very frequently to define the objective function
for the core management problem [8]. Both these
parameters depend on neutron flux and fuel distribution in
the core. The relative neutron flux at any location inside the
reactor core depends on the number of neighboring fuel
elements [9]. In this toy model we have made assumption
that the worth of individual fuel element depend on the
nearest neighbor fuel loadings and on the fuel loading itself
on that location. Hence we can multiply the individual fuel
loading with the nearest neighbor fuel loadings to get the
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fuel element worth; this worth distribution is equivalent to
power distribution. Next we can sum up the individual fuel
worth values to obtain the power peaking by dividing with
the total number of the loaded fuels. This power peaking
factor may be used for power flattening of the core. Now
with this model we have another opportunity to define the
core life considering the zero reactivity at the end of cycle.
As we measure the reactivity of a control rod free core in
terms of the total fuel element worth and vice-versa, hence
the total worth of our model will represent the cycle length.
Different core configuration with same fuel element set
gives different core reactivity and hence longer cycle length
configuration ensures efficient fuel consumption. Finally
we get the interpretation of power peaking factor and core
cycle length in terms of our modeled fuel element worth. In
this article, to serve our purpose we shall focus on power
distribution only.

ANN mimics our brain. In many cases, the issue is
approximating a static nonlinear, mapping with a neural
network. It consists of a large class of different
architectures. The most useful neural networks in function
approximation are Multi-layer Layer Perceptron (MLP) and
Radial Basis Function (RBF) networks [5]. Here we
concentrate on MLP networks. A MLP consists of an input
layer, several hidden layers, and an output layer. In a MLP
network each node, also called a neuron, includes a summer
and a nonlinear activation function. Detail is available
elsewhere [10]. We used MATLAB (Matrix Laboratory)
Neural Network Toolbox to simulate our network.
MATLAB is a product of Mathworks, a scientific software
package designed to provide integrated numeric
computation and graphics visualization. The network model
studied was chosen as multilayer perceptron with a feed-
forward back propagation algorithm. We have used linear
output function and tangent hyperbolic function as input
activation function. The back propagation learning
algorithm uses gradient method.

3. Results and Discussion

We have considered a 5 by 5 core matrix fueled with either
numerical values from 1 to 3, and our computer program
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computed the total number of neighboring fuel element
values around each element and their worth values as
defined above. Hence the simulator output represents the
power distribution. Our concern is of 3 by 3 core matrix
model, thus the outermost ring of the 5 by 5 matrix is a
dummy ring loaded with the value zero, added for the sake
of network training. Next we define the input vector for
neural network having elements first with central fuel
element of the matrix, then from the next ring in clock wise
direction, starting with the 2x2 element, and so on.
Similarly we defined the output vector to train the network
with the computed worth value matrix distributed in the
same manner as the input vector, but this time we have
excluded the outermost ring. We have trained the network
with fifty different data sets obtained from the neutronics
simulator and finally tested with another sets of data.
Results for sample data sets are shown in Table 1. The main
hurdle is to find the appropriate neural network architecture
for the problem in hand. There is no standard rule for doing
this leaving trial and error. The ANN corresponding to our
model simulator includes 25 inputs and 9 output units. We

Table 1: Neural network sample test data

Simulator RMSE
Input out ANN output (Normalized
put
Error)
0 0 0 0 O
6 11 14 6.621 11.290 13.720
0o 1 1 2 O
0 2 3 3 0 14 42 30 12.950 41.821 28.761 0.738
' ’ ’ (4.26%)
01 1 3 0
6 12 21 6.913 12.548 20.262
0 0 0 0 O
0 0 0 0 O
6 18 6 5.669 17.474 7.013
0o 1 2 1 O
0 3 1 3 0 21 14 21 19.926 13.131 21.706 1075
’ ’ ’ (8.34%)
0o 1 2 1 O
6 18 6 5.487 18.642 8.431
0 0 0 0 O
0 0 0 0 O
3 5 3 2.708 4.811 2.994
0o 1 1 1 O
0.192
0o 1 1 1 o0 5 8 5 5.051 8.239 4.723
(4.32%)
0o 1 1 1 O
3 5 3 3.218 4.938 2.849
0 0 0 0 O

varied the number of layers and number of neurons per
layer. The optimum network has been settled with single
hidden layer of 100 neurons. The training performance of
the network obtained from MATLAB is demonstrated in
Fig. 1. To evaluate the network prediction we used the root
mean square error (RMSE) value, which is normalized by
normalizing the average of the expected (computed) output
values to 100. This compares the ANN simulation result
with the desired output values (Table 1). Normalized error
values are within 20% for this optimum network. It means
ANN can learn the assumed property of nuclear reactor
core to a reasonable extent. We can expect to predict the
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characteristics of a reactor core of equivalent dimension of
that of the simulator model with this optimum network
structure. Alternately we hope to apply this neutronics
simulator model as a screening tool to find the optimum
ANN structure for the real core neutronics simulation. The
neutronics model simulation can be extended to study with
the wvariants of neural network architecture. Also
investigation of the simulator for higher dimensional core is
remaining.

Training Parameter
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Fig. 1: Neural network training performance

4. Conclusion

From the economic and safety point of view in-core fuel
management has to be done carefully. For such fuel
management, reactor core neutronics characterization is the
first step. We have studied the application of artificial
intelligence to perform this job. For a real reactor system it
will be difficult to perform neotronics calculation
recurrently to supply sufficient training data for a neural
network; whereas, it is expected that our simple model
study will aid to find the optimum structure of the network
quickly that will characterize the reactor core reasonably. In
the future work, the netronics simulator model will be
ornamented with real reactor parameter values and can be
used for preliminary study for in-core fuel management.
This handy equipment is expected to help core
characterization and the search of optimum core
configuration as well as for the assessment of application of
artificial intelligence for nuclear reactor core design and
safety.
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