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Abstract 

Nuclear reactor core configuration search is a standard optimization procedure. To avoid the time consuming reactor core characteristic 

evaluation for different core configurations we have investigated the training of artificial neural network (ANN) with a simple core 

neutronics simulator model. To find an optimum structure of the network is a matter of trial and error. Further the computationally 

expensive neutronics calculation steps makes it more difficult. It is found that ANN can learn the assumed property of our simple model. 

This simulator model has been demonstrated as a screening tool to find the optimum ANN structure for the core neutronics simulation. 

Besides, the optimum structure of the neural network is expected to predict the characteristics of a reactor core of equivalent dimension of 

that of the simulator model. Future direction of work has been identified. 
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1. Introduction 

For reactor core design, optimum core configuration search 

is an important issue. In-core fuel management of a nuclear 

reactor includes multiple steps of fuel reshuffling and 

calculating neutronics parameters recurrently. Optimum 

core configuration evaluation and selection is a standard 

optimization procedure, but the neutronics calculation is 

time consuming. Usually for core management study simple 

neutronics models are used [1]. Now-a-days with the 

increase of computer performance detailed model computer 

codes are in practice [2]. The application of artificial neural 

network for nuclear core characterization is already 

reported [3-7]; here we have investigated the training of an 

artificial neural network (ANN) with a simple core 

neutronics simulator model. 

2. Materials and Methods 

To grasp the inherent feature of in-core fuel management 

and to perform preliminary selection of core configurations 

we attempted artificial intelligence technique. Particularly, 

we concentrated on neural network approach. Here we 

investigated the feasibility of training an artificial neural 

network for neutronics simulation of a nuclear reactor core. 

Again it is a daunting task to train the network with 

hundreds of neutronics simulation data. So for the 

feasibility study of training a neural network for core 

neutronics simulation we have prepared a simple model 

coded in QBASIC. We consider this simple model as toy 

model. Power peaking factor and reactivity of the core is 

considered very frequently to define the objective function 

for the core management problem [8]. Both these 

parameters depend on neutron flux and fuel distribution in 

the core. The relative neutron flux at any location inside the 

reactor core depends on the number of neighboring fuel 

elements [9]. In this toy model we have made assumption 

that the worth of individual fuel element depend on the 

nearest neighbor fuel loadings and on the fuel loading itself 

on that location. Hence we can multiply the individual fuel 

loading with the nearest neighbor fuel loadings to get the 
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fuel element worth; this worth distribution is equivalent to 

power distribution. Next we can sum up the individual fuel 

worth values to obtain the power peaking by dividing with 

the total number of the loaded fuels. This power peaking 

factor may be used for power flattening of the core. Now 

with this model we have another opportunity to define the 

core life considering the zero reactivity at the end of cycle. 

As we measure the reactivity of a control rod free core in 

terms of the total fuel element worth and vice-versa, hence 

the total worth of our model will represent the cycle length. 

Different core configuration with same fuel element set 

gives different core reactivity and hence longer cycle length 

configuration ensures efficient fuel consumption. Finally 

we get the interpretation of power peaking factor and core 

cycle length in terms of our modeled fuel element worth. In 

this article, to serve our purpose we shall focus on power 

distribution only. 

ANN mimics our brain. In many cases, the issue is 

approximating a static nonlinear, mapping with a neural 

network. It consists of a large class of different 

architectures. The most useful neural networks in function 

approximation are Multi-layer Layer Perceptron (MLP) and 

Radial Basis Function (RBF) networks [5]. Here we 

concentrate on MLP networks. A MLP consists of an input 

layer, several hidden layers, and an output layer. In a MLP 

network each node, also called a neuron, includes a summer 

and a nonlinear activation function. Detail is available 

elsewhere [10]. We used MATLAB (Matrix Laboratory) 

Neural Network Toolbox to simulate our network. 

MATLAB is a product of Mathworks, a scientific software 

package designed to provide integrated numeric 

computation and graphics visualization. The network model 

studied was chosen as multilayer perceptron with a feed-

forward back propagation algorithm. We have used linear 

output function and tangent hyperbolic function as input 

activation function. The back propagation learning 

algorithm uses gradient method. 

3. Results and Discussion 

We have considered a 5 by 5 core matrix fueled with either 

numerical values from 1 to 3, and our computer program 
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computed the total number of neighboring fuel element 

values around each element and their worth values as 

defined above. Hence the simulator output represents the 

power distribution. Our concern is of 3 by 3 core matrix 

model, thus the outermost ring of the 5 by 5 matrix is a 

dummy ring loaded with the value zero, added for the sake 

of network training. Next we define the input vector for 

neural network having elements first with central fuel 

element of the matrix, then from the next ring in clock wise 

direction, starting with the 2×2 element, and so on. 

Similarly we defined the output vector to train the network 

with the computed worth value matrix distributed in the 

same manner as the input vector, but this time we have 

excluded the outermost ring. We have trained the network 

with fifty different data sets obtained from the neutronics 

simulator and finally tested with another sets of data. 

Results for sample data sets are shown in Table 1. The main 

hurdle is to find the appropriate neural network architecture 

for the problem in hand. There is no standard rule for doing 

this leaving trial and error. The ANN corresponding to our 

model simulator includes 25 inputs and 9 output units. We 

Table 1: Neural network sample test data 

Input  
Simulator 

output 
 ANN output  

RMSE 

(Normalized 

Error) 

       

0 0 0 0 0 
 6 11 14  6.621 11.290 13.720 

 
0.738 

(4.26%) 

0 1 1 2 0 

0 2 3 3 0  14 42 30  12.950 41.821 28.761 

0 1 1 3 0 
 6 12 21  6.913 12.548 20.262 

0 0 0 0 0 

       

0 0 0 0 0 
 6 18 6  5.669 17.474 7.013 

 
1.075 

(8.34%) 

0 1 2 1 0 

0 3 1 3 0  21 14 21  19.926 13.131 21.706 

0 1 2 1 0 
 6 18 6  5.487 18.642 8.431 

0 0 0 0 0 

       

0 0 0 0 0 
 3 5 3  2.708 4.811 2.994 

 
0.192 

(4.32%) 

0 1 1 1 0 

0 1 1 1 0  5 8 5  5.051 8.239 4.723 

0 1 1 1 0 
 3 5 3  3.218 4.938 2.849 

0 0 0 0 0 

varied the number of layers and number of neurons per 

layer. The optimum network has been settled with single 

hidden layer of 100 neurons. The training performance of 

the network obtained from MATLAB is demonstrated in 

Fig. 1. To evaluate the network prediction we used the root 

mean square error (RMSE) value, which is normalized by 

normalizing the average of the expected (computed) output 

values to 100. This compares the ANN simulation result 

with the desired output values (Table 1). Normalized error 

values are within 20% for this optimum network. It means 

ANN can learn the assumed property of nuclear reactor 

core to a reasonable extent. We can expect to predict the 

characteristics of a reactor core of equivalent dimension of 

that of the simulator model with this optimum network 

structure. Alternately we hope to apply this neutronics 

simulator model as a screening tool to find the optimum 

ANN structure for the real core neutronics simulation. The 

neutronics model simulation can be extended to study with 

the variants of neural network architecture. Also 

investigation of the simulator for higher dimensional core is 

remaining. 
 

 

Fig. 1: Neural network training performance 

4. Conclusion 

From the economic and safety point of view in-core fuel 

management has to be done carefully. For such fuel 

management, reactor core neutronics characterization is the 

first step. We have studied the application of artificial 

intelligence to perform this job. For a real reactor system it 

will be difficult to perform neotronics calculation 

recurrently to supply sufficient training data for a neural 

network; whereas, it is expected that our simple model 

study will aid to find the optimum structure of the network 

quickly that will characterize the reactor core reasonably. In 

the future work, the netronics simulator model will be 

ornamented with real reactor parameter values and can be 

used for preliminary study for in-core fuel management. 

This handy equipment is expected to help core 

characterization and the search of optimum core 

configuration as well as for the assessment of application of 

artificial intelligence for nuclear reactor core design and 

safety. 
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